博碩士論文 104827602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.149.27.202
姓名 范安蒂(Ha Thi Phuong Anh)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱
(Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 金屬凝膠( Metallogels )特殊的配位作用( Coordinative interactions )已被廣泛應用於生物醫學上,然而,在先前的研究中較少人討論金屬凝膠在傷口癒合方面的能力。在本研究中,我們利用多酚( polyphenols )和金屬離子的配位作用開發嶄新的天然金屬凝膠,使用低成本的多酚鞣酸(TA)和鈦離子(IV族)混合形成TA-TiIV凝膠。TA-TiIV凝膠的原位共凝膠化在結合不同功能性金屬離子具有良好的能力,因此,我們使用了五種金屬離子:鐵離子(Fe3+),銅(II)離子(Cu2+),鋅(II)離子(Zn2+),鈷(II)離子(Co2+)和鎳(II)離子(Ni2+) 進行抗菌測試,金屬凝膠在感染傷口的癒合過程中易受外部環境的pH和H2O2影響導致凝膠形成與崩解,透過紫外光/可見分光光譜( UV-Vis )和傅立葉轉換紅外光譜(FT-IR)對TA-TiIV金屬凝膠的化學式和配位結構進行量測,並進行電感耦合等離子體質譜法(ICP-MS)評估不同金屬離子的釋放能力,在先前的研究中TA-TiIV-CuII金屬凝膠已進行釋放速率研究(表5.5、7.4、8.4)。實驗結果顯示金屬離子釋放率具pH依賴性,且細菌的代謝過程導致酸性環境的產生,此外,TA-TiIV-CuII HG在含有H2O2的環境下與HRP結合導致釋放顯著的Cu2+離子。最後通過瓊脂擴散試驗( Agar diffusion test )評估金屬凝膠對大腸桿菌( Escherichia coli )、金黃色葡萄球菌(USA300)和表皮葡萄球 ( Staphylococcus epidermidis )的抗菌效果,以及細胞存活率分析( MTT assay )評估金屬凝膠對3T3細胞株的細胞毒性測試,結果顯示金屬凝膠具良好的生物相容性。在臨床感染傷口敷料應用上,TA-TiIV-CuII HG顯示具有抗菌效果,其感染傷口在8天後有明顯變小的趨勢,顯示TA-TiIV-CuII HG金屬凝膠有望成為感染傷口敷料應用的潛力材料。

摘要(英) Metallogels were established based on coordinative interactions, exhibiting unique abilities, and being applied for various biomedical applications. However, the applications of metallogels for wound healing property has not been explored. In this study, we report a newly nature-derived metallogels developed by coordination of polyphenols and metal ions. Gelation occurs by mixing low-cost polyphenolic tannic acid (TA) and group (IV) metal ions (titanium ions) to form TA-TiIV gel. The TA-TiIV gel exhibits a good ability to incorporate diverse functional metal ions by in situ co-gelations. Herein, we used five metal ions: ferric ions (Fe3+), copper(II) ions (Cu2+), zinc(II) ions (Zn2+), cobalt(II) ions (Co2+) and nickel(II) ions (Ni2+) for antimicrobial tests. The formations and collapse of formed metallogels are sensitive to external pH – and the presence of H2O2, which displays in the healing process of infected wounds. The chemical and coordinative structures of TA-TiIV metallogel were characterized by UV-Vis spectrometer and Fourier-transform infrared (FT-IR) spectroscopy. The release of metal ions was evaluated by inductively coupled plasma mass spectrometry (ICP-MS), indicating the different releasing profiles upon the types of metal ions. For TA-TiIV-CuII metallogel, distinct releasing rates at different pH values of 5.5, 7.4 and 8.4 has been studied. The result indicates the pH-dependent metal ions release manner. Moreover, the bacterial environment has been investigated by UV-Vis spectrometer and pH meter, the result showed the acidic environment during the metabolism process of bacteria. Besides, HRP incorporated with TA-TiIV-CuII HG brought to a significant Cu2+ ions released, where H2O2 is presented. As the results, antibacterial effect of synthesized metallogels againsts Gram-negative Escherichia coli, and Gram-positive Methicillin-Resistant Staphylococcus aureus (USA300), Staphylococcus epidermidis bacteria has been investigated by agar diffusion test. Simultaneously, cytotoxicity of metallogels on NIH 3T3 fibroblast cell line was also explored by MTT assay, and turned out to be excellent biocompatibility. For clinical applications as infected wound dressings, TA-TiIV-CuII HG indicated the antimicrobial effect, led to significant smaller in wound area after 8 days, compared to TA-TiIV HG and Gauze. Consequently, demonstrated HG is promising a potential materials for infected wound applications.
Keywords- Metallogels, tannic acid (TA), metal ions, nature-derived
關鍵字(中) ★ 金屬凝膠
★ 單寧酸(TA)
★ 金屬離子
★ 天然來源配位作用
★ 抗菌作用
關鍵字(英) ★ Metallogels
★ tannic acid (TA)
★ metal ions
★ nature-derived coordinations
★ antibacterial effect
論文目次 CHAPTER 1: INTRODUCTION 1
1.1 Wound healing process 1
1.2 Infected wound environment 3
1.2.1 What is infected wound? 3
1.2.2 Infected wound environment 4
1.3 Horseradish Peroxidase ( HRP ) 8
1.4 Antibacterial wound dressings 10
1.4.1 History of wound dressings 10
1.4.2 Traditional wound dressing 11
1.4.3 Antibacterial wound dressings 12
1.5 Metallogels.14
1.6 Metal – phenolic coordinative networks (MPNs) 15
CHAPTER 2: RESEARCH OBJECTIVES 19
CHAPTER 3: MATERIALS AND METHODS 21
3.1 Materials 21
3.2 TA and TiIV coordination by UV-Vis 21
3.3 Synthesis of TA-TiIV HGs 22
3.4 Synthesis of TA-TiIV composite gel via co-gelations with metal ions 22
3.5 Fourier-transform infrared spectroscopy 23
3.6 pH changes with bacteria growth 23
3.7 Determine Minimum Inhibitory Concentrations (MICs) of metal ions 23
3.8 Metal ions release 24
3.8.1 Metal ions release profile 24
3.8.2 Copper ions release profile in different pH values 25
3.8.3 Copper ions release profile from HRP conjugated in TA-TiIV-CuII HG 25
3.9 Cytotoxicity tests 25
3.9.1 Cytotoxicity test of metal ions on 3T3 fibroblasts cell 25
3.9.2 Calibrations curve of cell number 26
3.10 Antioxidant test 27
3.11 Inhibition zone 27
3.12 Animal experiments 28
CHAPTER 4: RESULTS AND DISCUSSIONS 29
4.1 TA and Ti(IV) coordination by UV-Vis 29
4.2 Synthesis of TA-TiIV HGs 30
4.3 FT-IR spectroscopy 30
4.4 pH changes with bacterial growth 31
4.5 Determine Minimum Inhibitory Concentrations (MICs) of metal ions 33
4.6 Metal ions release.34
4.6.1 Metal ions release profile 34
4.6.2 Copper ions release profile in different pH values 36
4.6.3 Copper ions release from HRP-containing TA-TiIV-CuII HG 38
4.7 Cytotoxicity test 42
4.8 Antioxidant activity of TA 43
4.9 Inhibition zone .44
4.9 Biocompatibility of TA-TiIV
-CuII HG 46
4.10 Treatment of infected wounds 48
CHAPTER 5: CONCLUSIONS & FUTURE WORKS 51
CHAPTER 6: REFERENCES 52
參考文獻 1. Bessa, L.J., P. Fazii, M. Di Giulio, and L. Cellini, Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. International wound journal, 2015. 12(1): p. 47-52.
2. Lu, Z., J. Zhang, Z. Yu, Q. Liu, K. Liu, M. Li, and D. Wang, Hydrogel degradation triggered by pH for the smart release of antibiotics to combat bacterial infection. New Journal of Chemistry, 2017. 41(2): p. 432-436.
3. McLister, A., J. McHugh, J. Cundell, and J. Davis, New developments in smart bandage technologies for wound diagnostics. Advanced Materials, 2016. 28(27): p. 5732-5737.
4. Wound Healing Center at Inova Loudoun treats complex wound and ostomy cases. May 19, 2017(https://www.inovanewsroom.org/ilh/2017/05/wound-healing-center-at-inova-loudoun-treats-complex-wound-and-ostomy-cases/).
5. Basic Principles of Wound Healing, in Wound Care Canada / Volume 9, Number 2. 2004.
6. Bowler, P., B. Duerden, and D.G. Armstrong, Wound microbiology and associated approaches to wound management. Clinical microbiology reviews, 2001. 14(2): p. 244-269.
7. Sood, A., M.S. Granick, and N.L. Tomaselli, Wound dressings and comparative effectiveness data. Advances in wound care, 2014. 3(8): p. 511-529.
8. Forman, H.J. and M. Torres, Redox signaling in macrophages. Molecular aspects of medicine, 2001. 22(4): p. 189-216.
9. Yin, Z., V.N. Ivanov, H. Habelhah, K. Tew, and Z.e. Ronai, Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer research, 2000. 60(15): p. 4053-4057.
10. Bedard, K. and K.-H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews, 2007. 87(1): p. 245-313.
11. Wittmann, C., P. Chockley, S. Singh, L. Pase, G. Lieschke, and C. Grabher, Hydrogen peroxide in inflammation: messenger, guide, and assassin. Advances in hematology, 2012. 2012.
12. Roy, S., S. Khanna, K. Nallu, T.K. Hunt, and C.K. Sen, Dermal wound healing is subject to redox control. Molecular Therapy, 2006. 13(1): p. 211-220.
13. Zhu, G., Q. Wang, S. Lu, and Y. Niu, Hydrogen Peroxide: A Potential Wound Therapeutic Target. Medical Principles and Practice, 2017.
14. Brånemark, P.-I., R. Ekholm, B. Albrektsson, J. Lindström, G. Lundborg, and J. Lundskog, Tissue injury caused by wound disinfectants. JBJS, 1967. 49(1): p. 48-62.
15. Carlsson, G.H., P. Nicholls, D. Svistunenko, G.I. Berglund, and J. Hajdu, Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide. Biochemistry, 2005. 44(2): p. 635-642.
16. Veitch, N.C., Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 2004. 65(3): p. 249-259.
17. Bidwai, A.K., C. Meyen, H. Kilheeney, D. Wroblewski, L.B. Vitello, and J.E. Erman, Apolar distal pocket mutants of yeast cytochrome c peroxidase: hydrogen peroxide reactivity and cyanide binding of the TriAla, TriVal, and TriLeu variants. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2013. 1834(1): p. 137-148.
18. Passardi, F., C. Penel, and C. Dunand, Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in plant science, 2004. 9(11): p. 534-540.
19. Hemeda, H.M. and B. Klein, Inactivation and regeneration of peroxidase activity in vegetable extracts treated with antioxidants. Journal of food science, 1991. 56(1): p. 68-71.
20. Dunford, H. and J. Stillman, On the function and mechanism of action of peroxidases. Coordination chemistry reviews, 1976. 19(3): p. 187-251.
21. Kamoun, E.A., E.-R.S. Kenawy, and X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research, 2017.
22. Winter, G.D., Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature, 1962. 193(4812): p. 293-294.
23. Edwards, J.V., D.R. Yager, I.K. Cohen, R.F. Diegelmann, S. Montante, N. Bertoniere, and A.F. Bopp, Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution. Wound Repair and Regeneration, 2001. 9(1): p. 50-58.
24. http://www.gomedsource.com/wound-care/. 2016.
25. Wahid, F., C. Zhong, H.-S. Wang, X.-H. Hu, and L.-Q. Chu, Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles. Polymers, 2017. 9(12): p. 636.
26. Bérdy, J., Thoughts and facts about antibiotics: where we are now and where we are heading. The Journal of antibiotics, 2012. 65(8): p. 385-395.
27. Singh, B., S. Sharma, and A. Dhiman, Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. International journal of pharmaceutics, 2013. 457(1): p. 82-91.
28. Tsou, T.-L., S.-T. Tang, Y.-C. Huang, J.-R. Wu, J.-J. Young, and H.-J. Wang, Poly (2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies. Journal of Materials Science: Materials in Medicine, 2005. 16(2): p. 95-100.
29. De Giglio, E., A. Trapani, D. Cafagna, C. Ferretti, R. Iatta, S. Cometa, E. Ceci, A. Romanelli, and M. Mattioli-Belmonte, Ciprofloxacin-loaded Chitosan nanoparticles as Titanium Coatings: A Valuable Strategy to Prevent Implant-associated Infections. Nano Biomedicine & Engineering, 2012. 4(4).
30. Marchesan, S., Y. Qu, L.J. Waddington, C.D. Easton, V. Glattauer, T.J. Lithgow, K.M. McLean, J.S. Forsythe, and P.G. Hartley, Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials, 2013. 34(14): p. 3678-3687.
31. Peng, K.-T., C.-F. Chen, I.-M. Chu, Y.-M. Li, W.-H. Hsu, R.W.-W. Hsu, and P.-J. Chang, Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials, 2010. 31(19): p. 5227-5236.
32. Chang, C.-H., Y.-H. Lin, C.-L. Yeh, Y.-C. Chen, S.-F. Chiou, Y.-M. Hsu, Y.-S. Chen, and C.-C. Wang, Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules, 2009. 11(1): p. 133-142.
33. Seil, J.T. and T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. International journal of nanomedicine, 2012. 7: p. 2767.
34. Aminov, R.I., The role of antibiotics and antibiotic resistance in nature. Environmental microbiology, 2009. 11(12): p. 2970-2988.
35. Lemire, J.A., J.J. Harrison, and R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 2013. 11(6): p. 371-384.
36. Rath, G., T. Hussain, G. Chauhan, T. Garg, and A.K. Goyal, Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Materials Science and Engineering: C, 2016. 58: p. 242-253.
37. Sugarman, B., Zinc and infection. Reviews of infectious diseases, 1983. 5(1): p. 137-147.
38. Casey, A., D. Adams, T. Karpanen, P. Lambert, B. Cookson, P. Nightingale, L. Miruszenko, R. Shillam, P. Christian, and T. Elliott, Role of copper in reducing hospital environment contamination. Journal of Hospital Infection, 2010. 74(1): p. 72-77.
39. Jaiswal, S., P. McHale, and B. Duffy, Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol–gel surfaces. Colloids and Surfaces B: Biointerfaces, 2012. 94: p. 170-176.
40. Jin, G., H. Cao, Y. Qiao, F. Meng, H. Zhu, and X. Liu, Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids and Surfaces B: Biointerfaces, 2014. 117: p. 158-165.
41. Marsh, P., Microbiological aspects of the chemical control of plaque and gingivitis. Journal of Dental Research, 1992. 71(7): p. 1431-1438.
42. Pandian, C.J., R. Palanivel, and S. Dhananasekaran, Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chinese journal of Chemical engineering, 2015. 23(8): p. 1307-1315.
43. Agwara, M., P. Ndifon, N. Ndosiri, A. Paboudam, D. Yufanyi, and A. Mohamadou, Synthesis, characterisation and antimicrobial activities of cobalt (ii), copper (ii) and zinc (ii) mixed-ligand complexes containing 1, 10-phenanthroline and 2, 2’-bipyridine. Bulletin of the Chemical Society of Ethiopia, 2010. 24(3).
44. Morrison, K.D., R. Misra, and L.B. Williams, Unearthing the antibacterial mechanism of medicinal clay: A geochemical approach to combating antibiotic resistance. Scientific reports, 2016. 6: p. 19043.
45. Imlay, J.A., S.M. Chin, and S. Linn, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 1988. 240(4852): p. 640.
46. Ning, C., X. Wang, L. Li, Y. Zhu, M. Li, P. Yu, L. Zhou, Z. Zhou, J. Chen, and G. Tan, Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism. Chemical research in toxicology, 2015. 28(9): p. 1815-1822.
47. Sarkar, S., S. Dutta, P. Bairi, and T. Pal, Redox-Responsive Copper (I) Metallogel: A Metal–Organic Hybrid Sorbent for Reductive Removal of Chromium (VI) from Aqueous Solution. Langmuir, 2014. 30(26): p. 7833-7841.
48. Zhang, J. and C.-Y. Su, Metal-organic gels: From discrete metallogelators to coordination polymers. Coordination Chemistry Reviews, 2013. 257(7): p. 1373-1408.
49. Byrne, P., G.O. Lloyd, L. Applegarth, K.M. Anderson, N. Clarke, and J.W. Steed, Metal-induced gelation in dipyridyl ureas. New Journal of Chemistry, 2010. 34(10): p. 2261-2274.
50. Häring, M. and D.D. Díaz, Supramolecular metallogels with bulk self-healing properties prepared by in situ metal complexation. Chemical Communications, 2016. 52(89): p. 13068-13081.
51. Tam, A.Y.-Y. and V.W.-W. Yam, Recent advances in metallogels. Chemical Society Reviews, 2013. 42(4): p. 1540-1567.
52. Basak, S., J. Nanda, and A. Banerjee, Multi-stimuli responsive self-healing metallo-hydrogels: tuning of the gel recovery property. Chemical Communications, 2014. 50(18): p. 2356-2359.
53. Rahim, M., M. Björnmalm, T. Suma, M. Faria, Y. Ju, K. Kempe, M. Müllner, H. Ejima, A.D. Stickland, and F. Caruso, Metal–Phenolic Supramolecular Gelation. Angewandte Chemie International Edition, 2016. 55(44): p. 13803-13807.
54. Guo, J., Y. Ping, H. Ejima, K. Alt, M. Meissner, J.J. Richardson, Y. Yan, K. Peter, D. von Elverfeldt, and C.E. Hagemeyer, Engineering multifunctional capsules through the assembly of metal–phenolic networks. Angewandte Chemie International Edition, 2014. 53(22): p. 5546-5551.
55. Barrett, J., Photo-oxidation of magnesium porphyrins and formation of protobiliviolin. Nature, 1967. 215(5102): p. 733-735.
56. Alben, J., P. Moh, F. Fiamingo, and R. Altschuld, Cytochrome oxidase (a3) heme and copper observed by low-temperature Fourier transform infrared spectroscopy of the CO complex. Proceedings of the National Academy of Sciences, 1981. 78(1): p. 234-237.
57. Ping, Y., J. Guo, H. Ejima, X. Chen, J.J. Richardson, H. Sun, and F. Caruso, pH‐Responsive Capsules Engineered from Metal–Phenolic Networks for Anticancer Drug Delivery. Small, 2015. 11(17): p. 2032-2036.
58. Waite, J.H. and M.L. Tanzer, Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science, 1981. 212(4498): p. 1038-1040.
59. Liang, G., J. Xu, and X. Wang, Synthesis and characterization of organometallic coordination polymer nanoshells of prussian blue using miniemulsion periphery polymerization (MEPP). Journal of the American Chemical Society, 2009. 131(15): p. 5378-5379.
60. Roy, X., J.K.-H. Hui, M. Rabnawaz, G. Liu, and M.J. MacLachlan, Prussian Blue Nanocontainers: Selectively Permeable Hollow Metal–Organic Capsules from Block Ionomer Emulsion-Induced Assembly. Journal of the American Chemical Society, 2011. 133(22): p. 8420-8423.
61. Ejima, H., J.J. Richardson, K. Liang, J.P. Best, M.P. van Koeverden, G.K. Such, J. Cui, and F. Caruso, One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science, 2013. 341(6142): p. 154-157.
62. Yang, W., A.M. Sousa, A. Thomas-Gahring, X. Fan, T. Jin, X. Li, P.M. Tomasula, and L. Liu, Electrospun polymer nanofibers reinforced by tannic acid/Fe+++ complexes. Materials, 2016. 9(9): p. 757.
63. Estroff, L.A. and A.D. Hamilton, Water gelation by small organic molecules. Chemical reviews, 2004. 104(3): p. 1201-1218.
64. Pavlukhina, S., Y. Lu, A. Patimetha, M. Libera, and S. Sukhishvili, Polymer multilayers with pH-triggered release of antibacterial agents. Biomacromolecules, 2010. 11(12): p. 3448-3456.
65. Niethammer, P., C. Grabher, A.T. Look, and T.J. Mitchison, A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 2009. 459(7249): p. 996-999.
66. Lu, Y., L. Li, Y. Zhu, X. Wang, M. Li, Z. Lin, X. Hu, Y. Zhang, Q. Yin, and H. Xia, Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation. ACS applied materials & interfaces, 2017.
67. Wang, Z., A. Von Dem Bussche, P.K. Kabadi, A.B. Kane, and R.H. Hurt, Biological and environmental transformations of copper-based nanomaterials. 2013.
68. Mazzola, P.G., A.F. Jozala, L.C.d.L. Novaes, P. Moriel, and T.C.V. Penna, Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Brazilian Journal of Pharmaceutical Sciences, 2009. 45(2): p. 241-248.
69. Malthus, T.R., London: J. Johnson, in St. Paul′s Church-yard. 1798. 1st edition.
70. Brand-Williams, W., M.-E. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 1995. 28(1): p. 25-30.
71. Çakar, S. and M. Özacar, Fe–tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016. 163: p. 79-88.
72. Ninan, N., A. Forget, V.P. Shastri, N.H. Voelcker, and A. Blencowe, Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS applied materials & interfaces, 2016. 8(42): p. 28511-28521.
73. Borgias, B.A., S.R. Cooper, Y.B. Koh, and K.N. Raymond, Synthetic, structural, and physical studies of titanium complexes of catechol and 3, 5-di-tert-butylcatechol. Inorganic Chemistry, 1984. 23(8): p. 1009-1016.
74. Zhuk, I., F. Jariwala, A.B. Attygalle, Y. Wu, M.R. Libera, and S.A. Sukhishvili, Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS nano, 2014. 8(8): p. 7733-7745.
75. Handke, L., K. Rogers, M. Olson, G. Somerville, T. Jerrells, M. Rupp, P. Dunman, and P. Fey, Staphylococcus epidermidis saeR is an effector of anaerobic growth and a mediator of acute inflammation. Infection and immunity, 2008. 76(1): p. 141-152.
76. Silhavy, T.J., D. Kahne, and S. Walker, The bacterial cell envelope. Cold Spring Harbor perspectives in biology, 2010. 2(5): p. a000414.
77. Anwar, H., C. Aldam, S. Visuvanathan, and A. Hart, The effect of metal ions in solution on bacterial growth compared with wear particles from hip replacements. Bone & Joint Journal, 2007. 89(12): p. 1655-1659.
78. Lee, B.P., A. Narkar, and R. Wilharm, Effect of metal ion type on the movement of hydrogel actuator based on catechol-metal ion coordination chemistry. Sensors and Actuators B: Chemical, 2016. 227: p. 248-254.
79. Bae, J.W., J.H. Choi, Y. Lee, and K.D. Park, Horseradish peroxidase‐catalysed in situ‐forming hydrogels for tissue‐engineering applications. Journal of tissue engineering and regenerative medicine, 2015. 9(11): p. 1225-1232.
80. Friedrich, L.C., A. Machulek Jr, V.d.O. Silva, and F.H. Quina, Interference of inorganic ions on phenol degradation by the Fenton reaction. Scientia Agricola, 2012. 69(6): p. 347-351.
81. Battistoni, A., F. Pacello, S. Folcarelli, M. Ajello, G. Donnarumma, R. Greco, M.G. Ammendolia, D. Touati, G. Rotilio, and P. Valenti, Increased expression of periplasmic Cu, Zn superoxide dismutase enhances survival of Escherichia coli invasive strains within nonphagocytic cells. Infection and immunity, 2000. 68(1): p. 30-37.
82. Park, H.-J., T.T. Nguyen, J. Yoon, and C. Lee, Role of reactive oxygen species in Escherichia coli inactivation by cupric ion. Environmental science & technology, 2012. 46(20): p. 11299-11304.
83. Cho, M., J. Kim, J.Y. Kim, J. Yoon, and J.-H. Kim, Mechanisms of Escherichia coli inactivation by several disinfectants. Water Research, 2010. 44(11): p. 3410-3418.
84. Li, M., Z. Ma, Y. Zhu, H. Xia, M. Yao, X. Chu, X. Wang, K. Yang, M. Yang, and Y. Zhang, Toward a Molecular Understanding of the Antibacterial Mechanism of Copper‐Bearing Titanium Alloys against Staphylococcus aureus. Advanced healthcare materials, 2016. 5(5): p. 557-566.
85. Wang, X., F. Cheng, J. Liu, J.-H. Smått, D. Gepperth, M. Lastusaari, C. Xu, and L. Hupa, Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta biomaterialia, 2016. 46: p. 286-298.
86. Gérard, C., L.-J. Bordeleau, J. Barralet, and C.J. Doillon, The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 2010. 31(5): p. 824-831.
87. Sen, C.K., S. Khanna, M. Venojarvi, P. Trikha, E.C. Ellison, T.K. Hunt, and S. Roy, Copper-induced vascular endothelial growth factor expression and wound healing. American Journal of Physiology-Heart and Circulatory Physiology, 2002. 282(5): p. H1821-H1827.
88. Stevenson, J., A. Barwinska-Sendra, E. Tarrant, and K. Waldron, Mechanisms of action and applications of the antimicrobial properties of copper. Microbial pathogens and strategies for combating them: Science, technology and education, 2013: p. 468-479.


指導教授 黃俊銘 黃俊仁(Chun-Ming Huang Chun-Jen Huang) 審核日期 2018-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明