以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:54 、訪客IP:18.117.75.6
姓名 洪祥益(Siang-Yi Hong) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 單面及雙面旋性聚合物穩固藍相液晶之光電特性
(Electro-optical properties of single- and double-side chiral polymer-stabilized blue phase liquid crystals)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 藍相液晶最初被發現時僅存在於相當窄小的溫度範圍,而至今已有許多使藍相液晶存在溫度範圍拓寬的方法被提出,其中由日本H. Kikuchi教授團隊所提出的高分子聚合物穩固藍相液晶(Polymer-stabilized blue phase liquid crystals)為目前最常被利用於拓寬藍相液晶存在溫度範圍的方法。本實驗室於2016年提出相較於Kikuchi教授團隊不同的拓寬藍相液晶存在溫度範圍的方法,此為表面穩固藍相液晶(Surface-stabilized blue phase liquid crystals),而本論文將探討於兩種不同聚合方式對於藍相液晶光電特性之影響。
在實驗過程中,將高分子聚合物穩固藍相液晶於不同照光時間之製程下,量測其藍相液晶施加不同電壓時的穿透度、雙折射、反應時間及晶格變化,且搭配表面聚合物穩固藍相液晶之穩固方法,以獲得與先前完全不同的光電特性,此外,因使用電極交錯排列的橫向電場基板會於光出射端造成繞射圖樣,為此比較兩者對於繞射效率及繞射圖樣之改變。最後,我們由兩種聚合物穩固後的新機制獲得不同的光電特性,但仍存在一些疑慮,若未來可朝此持續改善,相信對於藍相液晶未來之技術發展能有相當大的助益。
摘要(英) One of the advantages of blue phase liquid crystals (BPLCs) is the property of fast response. However, the intrinsic temperature range of BPLCs is too narrow to be applied for real application. To expand the temperature range of BPLCs, several methods have been proposed. Among them, in 2002, Kikuchi et al. proposed a useful method to expand the temperature range of BPLCs based on polymer stabilization technique, which is the most commonly used method to widen the temperature range of BPLCs. In 2016, our lab proposed another method to broaden the temperature range of the BPLCs by surface stabilization technique. In this study, a comparison of electro-optical (EO) properties between the polymer stabilized (PS) BPLCs and the surface stabilized (SS) BPLCs will be made. Moreover, some characteristics of EO properties of SSBPLCs and PSBPLCs will also be demonstrated.
The study can be divided into three parts. First, we will discuss the change of effective refractive index difference of PSBPLCs under various applied voltages, whose direction is perpendicular to the substrate, by an inclined input light beam. Second, we will discuss the method to decrease the operation voltage of PSBPLCs. The operation voltage is high/low with/without adding photo-initiator in PSBPLCs. Third, the polarization dependent diffraction patterns and efficiencies of PSBPLCs and SSBPLCs will also be investigated. In the second and third parts of experiments, we will show that the optical hysteresis effect of SSBPLCs is smaller than that of PSBPLCs. Moreover, the response time of PSBPLCs/SSBPLCs in the second and third experiments will also be investigated.
We believe that the investigation in this study will be a useful reference to further studies of the SSBPLCs/PSBPLCs. Either the SSBPLCs or PSBPLCs have great potential to be applied for optical devices, such as LC display, grating, etc.
關鍵字(中) ★ 藍相液晶
★ 旋性聚合物關鍵字(英) 論文目次 摘要................................................................................................................................ii
Abstract………………………………………………………………………………iii
誌謝...............................................................................................................................iv
目錄…............................................................................................................................v
表目錄..........................................................................................................................vii
圖目錄.........................................................................................................................viii
第一章 緒論........................................................................................................1
1.1 前言........................................................................................................1
1.2 動機........................................................................................................1
1.3 論文架構................................................................................................1
第二章 液晶簡介................................................................................................4
2-1 液晶導論................................................................................................4
2-2 液晶分類................................................................................................5
2-3 液晶物理特性......................................................................................15
第三章 藍相液晶簡介及實驗相關理論..........................................................23
3-1 何謂藍相液晶......................................................................................23
3-1.1 藍相液晶雙螺旋結構..........................................................................24
3-1.2 藍相液晶光電特性..............................................................................26
3-2 藍相液晶的判別方式..........................................................................30
3-2.1 偏光顯微鏡(Polarized optical microscopy).........................................30
3-2.2 反射頻譜(Reflection spectrum)...........................................................30
3-2.3 差示掃描量熱分析(Differential scanning calorimetry,DSC)..........31
3-2.4 科索圖形(Kossel diagrams).................................................................32
3-3 藍相液晶寬溫技術..............................................................................34
3-3.1 高分子穩定藍相液晶..........................................................................34
3-3.2 藍相液晶模板......................................................................................35
3-4 光柵的分類和特性..............................................................................36
第四章 實驗方法與實驗過程..........................................................................41
4-1 實驗材料介紹......................................................................................41
4-2 液晶盒製程..........................................................................................44
4-2.1 材料配製..............................................................................................44
4-2.2 玻璃基板處理......................................................................................44
4-2.3 ITO與IPS液晶盒製作方法...............................................................45
4-2.4 液晶注入方法......................................................................................46
4-3 實驗架設..............................................................................................46
第五章 實驗結果與討論..................................................................................53
5-1 主體藍相液晶......................................................................................53
5-1.1 主體藍相液晶存在溫寬範圍..............................................................53
5-1.2 主體藍相液晶之光電特性..................................................................54
5-2 聚合物穩定藍相液晶於各向電場之光電特性..................................58
5-2.1 聚合物穩固藍相液晶..........................................................................59
5-2.2 施加橫向電場於聚合物穩固藍相液晶..............................................62
5-2.3 施加正向電場於聚合物穩固藍相液晶..............................................64
5-3 光起始劑於聚合物穩定藍相液晶之影響..........................................71
5-3.1 藍相液晶存在溫寬範圍之比較..........................................................71
5-3.2 電控穿透度之比較..............................................................................73
5-3.3 反應時間之比較..................................................................................79
5-4 雙重聚合物穩固藍相液晶..................................................................83
5-4.1 表面旋性聚合物處理之橫向電場液晶盒製程..................................83
5-4.2 雙重聚合物穩固藍相液晶之光電特性..............................................84
5-4.3 基板表面有無旋性聚合物對於藍相液晶繞射之影響......................91
第六章 結論與未來展望................................................................................104
6-1 結論....................................................................................................104
6-2 未來展望............................................................................................106
參考文獻....................................................................................................................108
參考文獻 [1] F. Reinitzer, “Beitrage zur kenntiniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[2] O. Lehman, “On flowing crystal,” Z. Phys. Chem. 4, 462 (1889).
[3] 松本正一、角田市良合著,劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996)
[4] S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D. H. Ko, D. J. Gardiner, S. Nosheen, Y. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103, 101105 (2013).
[5] M. Gu, Cholesteric Liquid Crystal Reflective mode, retrieved from http://www.personal.kent.edu/~mgu/LCD/chlc.htm ( 2011).
[6] David J. Griffiths, Introduction to Electrodynamics (3rd ed.), Prentice Hall: pp. 175, 179–184, 1998
[7] P. J. Collings and M. Hird, Introduction to liquid crystals chemistry and physics, CRC Press, London (1997).
[8] P. P. Crooker, “Blue Phase” in Chirality in liquid crystals, Springer Verlag, New York (2001).
[9] C. Bohley and T. Scharf, “Polarization of light reflected by cholesteric blue phase,” J. Opt. A: Pure Appl. Opt. 6, S77 (2004).
[10] 陳可邦,「中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究」,國立中央大學,碩士論文,民國105年
[11] H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct Bond 128, 99 (2008).
[12] H. Stark, and H. R. Trebin, “Theory of electrostriction of liquid-crystalline blue phases I and II,” Physical Review A, 44, 4 (1991)
[13] G. Heppke, B. Jérôme, H. S. Kitzerow, P. Pieranski “Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy,” J. Phys. France 50, 2991 (1989).
[14] S.-Y. Lu and L.-C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35, 562 (2010)
[15] 鄭恪亭-液晶光電材料及其應用
[16] J. L. Zhu, S. B. Ni, Y. Song, E. W. Zhong, Y. J. Wang, C. P. Chen, Z. Ye, G. He, D. Q. Wu, X. L. Song, J. G. Lu, and Y. Su, “Improve Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent,” Appl. Phys. Lett 102, 071104 (2013)
[17] 黃琬翎,「摻雜偶氮材料在藍相液晶中之光電特性偏光顯微鏡」,國立成功大學,碩士論文,民國100年。
[18] H. Kikuchi, “Blue Phases for LCDs Based on Isotropic-to-Anisotropic Transitions”, Information Display Online, retrieved from http://informationdisplay.org/IDArchive/2009/November/FrontlineTechnologyBluePhasesforLCDsBasedo.aspx
[19] 陳亭惠,「藍相液晶摻雜旋性聚合物之表面穩定效應之研究碩論」,國立中央大學,碩士論文,民國105年
[20] C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[21] J. Thoen, “Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate,” Phys. Rev. A 37, 1754 (1988).
[22] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer- stabilized liquid crystal blue phases,” Nat. Mater. 1, 64 (2002).
[23] F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Bluephase templated fabrication of threedimensional nanostructures for photonic applications,” Nat. Mater. 11, 599 (2012).
[24] E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases.” Phys. Rev. E 81, 041703 (2010).
[25] R. J. Miller, H. F. Gleeson, “Lattice Parameter Measurements from the Kossel Diagrams of the Cubic Liquid Crystal Blue Phases,” J. Phy II. France 6, 909922 (1996).
[26] Dong Chen, Michael R. Tuchband, Balazs Horanyi, Eva Korblova, David M. Walba, Matthew A. Glaser, Joseph E. Maclennan, and Noel A. Clark, “Diastereomeric liquid crystal domains at the mesoscale”, Nature Communications 6, 7763 (2015).
[27] J. W. Li, G. J. Bie, A. A. Gao, W. S. Du, Z. w. An, C. Gao, J. Li, and M. G. Hu, “Advances on monomers used in polymer stabilized blue phase liquid crystal,” Chin. J. Liq. Cryst. Displays , 31, 10072780 (2016).
[28] Chemblink, “Paliocolor LC 756 " in "Online Database of Chemical from Around the World,” retrieved from
http://www.chemblink.com/products/223572-88-1.htm (2014).
[29] SIGMA-ALDRRICH, retrieved from
http://www.sigmaaldrich.com/catalog/product/aldrich/196118
[30] 王郁茵,「膽固醇藍相液晶之菲列斯涅耳透鏡光電特性之研究」,國立中山大學,碩士論文,民國99年。
[31] D. Xu, J. Yan, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett 105, 011119 (2014)
[32] H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[33] H. Y. Liu, C. T. Wang, C. Y. Hsu, and T. H. Lin, “Pinning effect on the photonic bandgaps of blue-phase liquid crystal,” Appl. Optics 50, 1606 (2011)
[34] R. Manda, S. Pagidi, S. S. Bhattacharyya, C. H. Park, Y. J. Lim, J. S. Gwag, and S. H. Lee, “Fast response and transparent optically isotropic liquid crystal diffraction grating,” Opt. Express 25, 24035 (2017)
[35] Y. Yuan, T. Li, C. P. Chen, S. Liu, N. Rong, W. Li, W. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23, 20007 (2015)
[36] H. J. Coles and M. N. Pivnenko, “Liquid crystal blue phase with a wide temperature range,” Nature 436, 997 (2005)
[37] A.Y. G. Fuh, C. Y. Huang, C. K. Liu, Y. D. Chen, and K. T. Cheng, “Dual liquid crystal alignment configuration based on nanoparticle-doped polymer films,” Opt. Express 19, 11825 (2011).
[38] J. R. Marciante, N. O. Farmiga, J. I. Hirsh, M. S. Evans, H. T. Ta, “Optical measurement of depth and duty cycle for binary diffraction gratings with subwavelength features,” Appl. Optics 42, 3234 (2003)
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2018-1-31 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare