參考文獻 |
1. Kim, W.Y. and W.G. Kaelin, Role ofVHLGene Mutation in Human Cancer. Journal of Clinical Oncology, 2004. 22(24): p. 4991-5004.
2. Kim, J.J., B.I. Rini, and D.E. Hansel, Von Hippel Lindau Syndrome, in Diseases of DNA Repair, S.I. Ahmad, Editor. 2010, Springer New York: New York, NY. p. 228-249.
3. Asthagiri, A.R., et al., Prospective evaluation of radiosurgery for hemangioblastomas in von Hippel-Lindau disease. Neuro Oncol, 2010. 12(1): p. 80-6.
4. Barontini, M. and P.L.M. Dahia, VHL Disease. Best Practice & Research Clinical Endocrinology & Metabolism, 2010. 24(3): p. 401-413.
5. Jimenez, C., et al., Use of the Tyrosine Kinase Inhibitor Sunitinib in a Patient with von Hippel-Lindau Disease: Targeting Angiogenic Factors in Pheochromocytoma and Other von Hippel-Lindau Disease-Related Tumors. The Journal of Clinical Endocrinology & Metabolism, 2009. 94(2): p. 386-391.
6. Lonser, R.R., et al., von Hippel-Lindau disease. The Lancet, 2003. 361(9374): p. 2059-2067.
7. Choo, D., et al., Endolymphatic sac tumors in von Hippel—Lindau disease. Journal of Neurosurgery, 2004. 100(3): p. 480-487.
8. Kaelin, W.G., Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer, 2002. 2(9): p. 673-682.
9. Hsieh, J.J., et al., Renal cell carcinoma. Nature Reviews Disease Primers, 2017. 3: p. 17009.
10. Lopez-Beltran, A., et al., 2009 update on the classification of renal epithelial tumors in adults. International Journal of Urology, 2009. 16(5): p. 432-443.
11. Algaba, F., et al., Handling and Pathology Reporting of Renal Tumor Specimens. European Urology, 2004. 45(4): p. 437-443.
12. Lopez-Beltran, A., et al., 2004 WHO Classification of the Renal Tumors of the Adults. European Urology, 2006. 49(5): p. 798-805.
13. Delahunt, B. and J.N. Eble, Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 1997. 10(6): p. 537-544.
14. Riazalhosseini, Y. and M. Lathrop, Precision medicine from the renal cancer genome. Nat Rev Nephrol, 2016. 12(11): p. 655-666.
15. Brauch, H., et al., VHL Alterations in Human Clear Cell Renal Cell Carcinoma: Association with Advanced Tumor Stage and a Novel Hot Spot Mutation. Cancer Research, 2000. 60(7): p. 1942-1948.
16. The Cancer Genome Atlas Research, N., Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 2013. 499: p. 43-49.
17. Banks, R.E., et al., Genetic and Epigenetic Analysis of von Hippel-Lindau (VHL) Gene Alterations and Relationship with Clinical Variables in Sporadic Renal Cancer. Cancer Research, 2006. 66(4): p. 2000-2011.
18. Debigaré, R. and S.R. Price, Proteolysis, the ubiquitin-proteasome system, and renal diseases. American Journal of Physiology - Renal Physiology, 2003. 285(1): p. F1-F8.
19. Moore, L.E., et al., Von Hippel-Lindau (VHL) Inactivation in Sporadic Clear Cell Renal Cancer: Associations with Germline VHL Polymorphisms and Etiologic Risk Factors. PLOS Genetics, 2011. 7(10): p. e1002312.
20. Pritchett, T.L., et al., Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene, 2014. 34: p. 2631-2639.
21. Mungan, M.U., et al., Expression of COX-2 in Normal and Pyelonephritic Kidney, Renal Intraepithelial Neoplasia, and Renal Cell Carcinoma. European Urology, 2006. 50(1): p. 92-97.
22. Meteoglu, I., et al., NF-KappaB expression correlates with apoptosis and angiogenesis in clear cell renal cell carcinoma tissues. Journal of Experimental & Clinical Cancer Research : CR, 2008. 27(1): p. 53-53.
23. Kuo, C.-Y., C.-H. Lin, and T. Hsu, VHL Inactivation in Precancerous Kidney Cells Induces an Inflammatory Response via ER Stress–Activated IRE1α Signaling. Cancer Research, 2017. 77(13): p. 3406-3416.
24. Ginhoux, F. and S. Jung, Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol, 2014. 14(6): p. 392-404.
25. Gomez Perdiguero, E., et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015. 518(7540): p. 547-551.
26. Apte, R.S., Regulation of Angiogenesis by Macrophages, in Retinal Degenerative Diseases: Laboratory and Therapeutic Investigations, R.E. Anderson, J.G. Hollyfield, and M.M. LaVail, Editors. 2010, Springer New York: New York, NY. p. 15-19.
27. Yang, L. and Y. Zhang, Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol, 2017. 10(1): p. 58.
28. Lewis, Claire E., Allison S. Harney, and Jeffrey W. Pollard, The Multifaceted Role of Perivascular Macrophages in Tumors. Cancer Cell, 2016. 30(1): p. 18-25.
29. Hughes, R., et al., Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Research, 2015. 75(17): p. 3479-3491.
30. Bonde, A.-K., et al., Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer, 2012. 12(1).
31. Das, A., et al., Monocyte and Macrophage Plasticity in Tissue Repair and Regeneration. The American Journal of Pathology, 2015. 185(10): p. 2596-2606.
32. Motoshima, T., et al., Phenotypical change of tumor-associated macrophages in metastatic lesions of clear cell renal cell carcinoma. Med Mol Morphol, 2017.
33. Thorsten Cramer, Y.Y., 2, et al., HIF-1a Is Essential for Myeloid Cell-Mediated Inflammation. 2003. 112(5): p. 645-657.
34. Ryan, M.J., et al., HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney International, 1994. 45(1): p. 48-57.
35. Bosshart, H. and M. Heinzelmann, THP-1 cells as a model for human monocytes. Annals of Translational Medicine, 2016. 4(21): p. 438.
36. Becher, B., S. Tugues, and M. Greter, GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity, 2016. 45(5): p. 963-973.
37. Hunter, C.A. and S.A. Jones, IL-6 as a keystone cytokine in health and disease. Nature Immunology, 2015. 16: p. 448-457.
38. Su, X., et al., Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nature Immunology, 2015. 16: p. 838-849.
39. Calandra, T. and T. Roger, Macrophage migration inhibitory factor: a regulator of innate immunity. Nature Reviews Immunology, 2003. 3: p. 791-800.
40. Gupta, K.K., et al., Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4. Biochemical and Biophysical Research Communications, 2016. 477(3): p. 503-508.
41. Du, W., et al., Tumor-derived macrophage migration inhibitory factor promotes an autocrine loop that enhances renal cell carcinoma. Oncogene, 2013. 32(11): p. 1469-1474.
42. Ivanov, S.V., et al., Two novel VHL targets, TGFBI (BIGH3) and its transactivator KLF10, are up-regulated in renal clear cell carcinoma and other tumors. Biochem Biophys Res Commun, 2008. 370(4): p. 536-540.
43. Gruss, H.J., et al., Interferon-gamma interrupts autocrine growth mediated by endogenous interleukin-6 in renal-cell carcinoma. International Journal of Cancer, 1991. 49(5): p. 770-773.
44. Gabay, C., Interleukin-6 and chronic inflammation. Arthritis Res Ther, 2006. 8 Suppl 2: p. S3.
45. Kamińska, K., et al., Interleukin-6 as an emerging regulator of renal cell cancer. Urologic Oncology: Seminars and Original Investigations, 2015. 33(11): p. 476-485.
46. Chrobak, I., et al., Interferon-gamma promotes vascular remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and transforming growth factor (TGF) beta2. J Cell Physiol, 2013. 228(8): p. 1774-1783.
47. Kammertoens, T., et al., Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression. Nature, 2017. 545(7652): p. 98-102.
48. Anders, H.-J. and M. Ryu, Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney International, 2011. 80(9): p. 915-925.
49. Genin, M., et al., M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015. 15: p. 577.
50. Jafar, T.H., et al., Progression of chronic kidney disease: The role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Annals of Internal Medicine, 2003. 139(4): p. 244-252.
51. Zaidi, M.R. and G. Merlino, The Two Faces of Interferon-γ in Cancer. Clinical Cancer Research, 2011. 17(19): p. 6118.
52. Moss, J.W.E. and D.P. Ramji, Interferon-γ: Promising therapeutic target in atherosclerosis. World Journal of Experimental Medicine, 2015. 5(3): p. 154-159.
53. Alexander, W.S., et al., SOCS1 Is a Critical Inhibitor of Interferon γ Signaling and Prevents the Potentially Fatal Neonatal Actions of this Cytokine. Cell, 1999. 98(5): p. 597-608.
|