博碩士論文 104826015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.117.99.192
姓名 劉耕維(Keng-Wei Liu)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱
(VHL knockdown HK-2 cells induce macrophage endothelial extravasation)
相關論文
★ 由基因微陣列分析發炎與腎臟細胞癌發生之機制★ VHL基因突變在癌前期的組織發炎機制
★ VHL剔除模型之轉錄體差異以及台灣透明細胞腎細胞癌族群之特定基因體變異之研究★ ITPR2, an ER calcium channel, regulates ER stress and inflammatory response in pre-cancerous kidney tubule cells
★ 透明腎臟細胞癌發生前期與組織發炎之關係研究★ VHL與KIM-1的功能關係研究
★ 血管內皮細胞在腫瘤微環境中促進透明腎細胞癌形成之研究★ Study of the Interaction between VHL/Vhlh Deficient Kidney Epithelial Cells and Macrophages—Relevance to the Development of Clear-Cell Renal Cell Carcinoma
★ 應用大腸桿菌與酵母菌蛋白質體晶片系統性分析抗菌肽及抗生素作用之目標蛋白質★ Analysis of Gene Expression of Chronic Obstructive Pulmonary Disease and Chronic Kidney Disease to Illuminate Chronic Inflammation Associated with Tumor Microenvironment and Potential Treatment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 腎細胞癌對大多數化學治療或是放射治療都具有抗性,逢希伯-林道(Von Hippel-Lindau, VHL)是著名的透明細胞腎細胞癌(clear-cell renal cell carcinoma, ccRCC )的腫瘤抑制基因。近來發現,慢性發炎會導致透明細胞腎細胞癌。而在我們的VHL基因剔除小鼠模式中也展示了喪失VHL蛋白質的功能將導致嚴重的發炎與纖維化現象。在這次的研究中,我們在transwell測定中共同培養VHL基因下調或正常的人類非癌症腎臟細胞(human non-cancerous kidney cell line, HK-2)、人類臍靜脈內皮細胞(Human Umbilical Vein Endothelial cells, HUVECs)以及使用單核細胞(monocyte, THP-1)經丙二醇甲醚醋酸酯(phorbol myristate acetate, PMA)引發而成的巨噬細胞(macrophage)等三種細胞來模擬巨噬細胞的內皮細胞外滲現象。在模擬現象的實驗中,單層的人類臍靜脈內皮細胞被培養在多孔膜上,在形成單層膜後加入巨噬細胞。而實驗的結果表示,在VHL基因下調的人類腎臟細胞組別中有較多的巨噬細胞穿越過人類臍靜脈細胞。而後我們更進一步地使用Human Cytokine Array找出五種可能具有引起巨噬細胞的內皮細胞外滲的發炎相關細胞因子。
摘要(英) Renal cell carcinoma is resistant to most chemotherapy and radiation therapy. Von Hippel-Lindau (VHL) is a well-known tumor suppressor gene of clear-cell renal cell carcinoma (ccRCC). Recent findings have indicated that ccRCC is caused by chronic inflammation. Our VHL gene knock out mouse model also demonstrates that the immediate consequence of VHL loss-of-function is severe inflammation and fibrosis. In this research, we mime a situation of macrophage endothelial extravasation by using transwell assay and co-culture of 3 kinds of cell lines: human non-cancerous kidney cell line HK-2 (with or without VHL knockdown), Human Umbilical Vein Endothelial Cells (HUVECs), and macrophage that is induced from monocyte precursor THP-1 by phorbol myristate acetate (PMA). In this assay, a monolayer of HUVECs is grown on the porous membrane, on which differentiated THP-1 is then seeded. The capability of kidney tubule cells to attract THP-1 cells to pass through the HUVEC monolayer (endothelial extravasation) is measured, comparing VHL+ and VHL knockdown. We found that VHL knockdown HK-2 cells could better induce macrophage endothelial extravasation. Further, we used Human Cytokine Array to identify five inflammation-related cytokines that could recruit macrophages.
關鍵字(中) ★ 巨噬細胞 關鍵字(英) ★ VHL
★ macrophage extravasation
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 List of Figures v
表目錄 List of Tables vi
Chapter 1 Introduction 1
1-1 Von Hippel-Lindau Syndrome 1
1-2 Renal Cell Carcinoma 4
1-3 VHL Mutant Leads to Precancerous Tissue Inflammation in ccRCC 6
1-4 Macrophages Polarization and Tumor-Associated Macrophage (TAM) 9
Chapter 2 Materials and Methods 12
2-1 Reagents 12
2-1-1 12-O-Tetradecanoylphorbol-13-acetate 12
2-1-2 Other Reagents 13
2-1-3 Reagents for Cell Culture 14
2-2 Methods 15
2-2-1 DNA Extraction 15
2-2-2 Transfection 16
2-2-3 Transwell Assay 17
2-2-4 Protein Isolation 18
2-2-5 Western Blot Analysis 19
2-2-6 Crystal Violet Staining of Transwell 20
2-2-7 Human Cytokine Array 21
Chapter 3 Results 23
Chapter 4 Conclusion and Discussion 34
Chapter 5 Reference 37

參考文獻 1. Kim, W.Y. and W.G. Kaelin, Role ofVHLGene Mutation in Human Cancer. Journal of Clinical Oncology, 2004. 22(24): p. 4991-5004.
2. Kim, J.J., B.I. Rini, and D.E. Hansel, Von Hippel Lindau Syndrome, in Diseases of DNA Repair, S.I. Ahmad, Editor. 2010, Springer New York: New York, NY. p. 228-249.
3. Asthagiri, A.R., et al., Prospective evaluation of radiosurgery for hemangioblastomas in von Hippel-Lindau disease. Neuro Oncol, 2010. 12(1): p. 80-6.
4. Barontini, M. and P.L.M. Dahia, VHL Disease. Best Practice & Research Clinical Endocrinology & Metabolism, 2010. 24(3): p. 401-413.
5. Jimenez, C., et al., Use of the Tyrosine Kinase Inhibitor Sunitinib in a Patient with von Hippel-Lindau Disease: Targeting Angiogenic Factors in Pheochromocytoma and Other von Hippel-Lindau Disease-Related Tumors. The Journal of Clinical Endocrinology & Metabolism, 2009. 94(2): p. 386-391.
6. Lonser, R.R., et al., von Hippel-Lindau disease. The Lancet, 2003. 361(9374): p. 2059-2067.
7. Choo, D., et al., Endolymphatic sac tumors in von Hippel—Lindau disease. Journal of Neurosurgery, 2004. 100(3): p. 480-487.
8. Kaelin, W.G., Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer, 2002. 2(9): p. 673-682.
9. Hsieh, J.J., et al., Renal cell carcinoma. Nature Reviews Disease Primers, 2017. 3: p. 17009.
10. Lopez-Beltran, A., et al., 2009 update on the classification of renal epithelial tumors in adults. International Journal of Urology, 2009. 16(5): p. 432-443.
11. Algaba, F., et al., Handling and Pathology Reporting of Renal Tumor Specimens. European Urology, 2004. 45(4): p. 437-443.
12. Lopez-Beltran, A., et al., 2004 WHO Classification of the Renal Tumors of the Adults. European Urology, 2006. 49(5): p. 798-805.
13. Delahunt, B. and J.N. Eble, Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 1997. 10(6): p. 537-544.
14. Riazalhosseini, Y. and M. Lathrop, Precision medicine from the renal cancer genome. Nat Rev Nephrol, 2016. 12(11): p. 655-666.
15. Brauch, H., et al., VHL Alterations in Human Clear Cell Renal Cell Carcinoma: Association with Advanced Tumor Stage and a Novel Hot Spot Mutation. Cancer Research, 2000. 60(7): p. 1942-1948.
16. The Cancer Genome Atlas Research, N., Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 2013. 499: p. 43-49.
17. Banks, R.E., et al., Genetic and Epigenetic Analysis of von Hippel-Lindau (VHL) Gene Alterations and Relationship with Clinical Variables in Sporadic Renal Cancer. Cancer Research, 2006. 66(4): p. 2000-2011.
18. Debigaré, R. and S.R. Price, Proteolysis, the ubiquitin-proteasome system, and renal diseases. American Journal of Physiology - Renal Physiology, 2003. 285(1): p. F1-F8.
19. Moore, L.E., et al., Von Hippel-Lindau (VHL) Inactivation in Sporadic Clear Cell Renal Cancer: Associations with Germline VHL Polymorphisms and Etiologic Risk Factors. PLOS Genetics, 2011. 7(10): p. e1002312.
20. Pritchett, T.L., et al., Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene, 2014. 34: p. 2631-2639.
21. Mungan, M.U., et al., Expression of COX-2 in Normal and Pyelonephritic Kidney, Renal Intraepithelial Neoplasia, and Renal Cell Carcinoma. European Urology, 2006. 50(1): p. 92-97.
22. Meteoglu, I., et al., NF-KappaB expression correlates with apoptosis and angiogenesis in clear cell renal cell carcinoma tissues. Journal of Experimental & Clinical Cancer Research : CR, 2008. 27(1): p. 53-53.
23. Kuo, C.-Y., C.-H. Lin, and T. Hsu, VHL Inactivation in Precancerous Kidney Cells Induces an Inflammatory Response via ER Stress–Activated IRE1α Signaling. Cancer Research, 2017. 77(13): p. 3406-3416.
24. Ginhoux, F. and S. Jung, Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol, 2014. 14(6): p. 392-404.
25. Gomez Perdiguero, E., et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015. 518(7540): p. 547-551.
26. Apte, R.S., Regulation of Angiogenesis by Macrophages, in Retinal Degenerative Diseases: Laboratory and Therapeutic Investigations, R.E. Anderson, J.G. Hollyfield, and M.M. LaVail, Editors. 2010, Springer New York: New York, NY. p. 15-19.
27. Yang, L. and Y. Zhang, Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol, 2017. 10(1): p. 58.
28. Lewis, Claire E., Allison S. Harney, and Jeffrey W. Pollard, The Multifaceted Role of Perivascular Macrophages in Tumors. Cancer Cell, 2016. 30(1): p. 18-25.
29. Hughes, R., et al., Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Research, 2015. 75(17): p. 3479-3491.
30. Bonde, A.-K., et al., Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer, 2012. 12(1).
31. Das, A., et al., Monocyte and Macrophage Plasticity in Tissue Repair and Regeneration. The American Journal of Pathology, 2015. 185(10): p. 2596-2606.
32. Motoshima, T., et al., Phenotypical change of tumor-associated macrophages in metastatic lesions of clear cell renal cell carcinoma. Med Mol Morphol, 2017.
33. Thorsten Cramer, Y.Y., 2, et al., HIF-1a Is Essential for Myeloid Cell-Mediated Inflammation. 2003. 112(5): p. 645-657.
34. Ryan, M.J., et al., HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney International, 1994. 45(1): p. 48-57.
35. Bosshart, H. and M. Heinzelmann, THP-1 cells as a model for human monocytes. Annals of Translational Medicine, 2016. 4(21): p. 438.
36. Becher, B., S. Tugues, and M. Greter, GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity, 2016. 45(5): p. 963-973.
37. Hunter, C.A. and S.A. Jones, IL-6 as a keystone cytokine in health and disease. Nature Immunology, 2015. 16: p. 448-457.
38. Su, X., et al., Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nature Immunology, 2015. 16: p. 838-849.
39. Calandra, T. and T. Roger, Macrophage migration inhibitory factor: a regulator of innate immunity. Nature Reviews Immunology, 2003. 3: p. 791-800.
40. Gupta, K.K., et al., Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4. Biochemical and Biophysical Research Communications, 2016. 477(3): p. 503-508.
41. Du, W., et al., Tumor-derived macrophage migration inhibitory factor promotes an autocrine loop that enhances renal cell carcinoma. Oncogene, 2013. 32(11): p. 1469-1474.
42. Ivanov, S.V., et al., Two novel VHL targets, TGFBI (BIGH3) and its transactivator KLF10, are up-regulated in renal clear cell carcinoma and other tumors. Biochem Biophys Res Commun, 2008. 370(4): p. 536-540.
43. Gruss, H.J., et al., Interferon-gamma interrupts autocrine growth mediated by endogenous interleukin-6 in renal-cell carcinoma. International Journal of Cancer, 1991. 49(5): p. 770-773.
44. Gabay, C., Interleukin-6 and chronic inflammation. Arthritis Res Ther, 2006. 8 Suppl 2: p. S3.
45. Kamińska, K., et al., Interleukin-6 as an emerging regulator of renal cell cancer. Urologic Oncology: Seminars and Original Investigations, 2015. 33(11): p. 476-485.
46. Chrobak, I., et al., Interferon-gamma promotes vascular remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and transforming growth factor (TGF) beta2. J Cell Physiol, 2013. 228(8): p. 1774-1783.
47. Kammertoens, T., et al., Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression. Nature, 2017. 545(7652): p. 98-102.
48. Anders, H.-J. and M. Ryu, Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney International, 2011. 80(9): p. 915-925.
49. Genin, M., et al., M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015. 15: p. 577.
50. Jafar, T.H., et al., Progression of chronic kidney disease: The role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Annals of Internal Medicine, 2003. 139(4): p. 244-252.
51. Zaidi, M.R. and G. Merlino, The Two Faces of Interferon-γ in Cancer. Clinical Cancer Research, 2011. 17(19): p. 6118.
52. Moss, J.W.E. and D.P. Ramji, Interferon-γ: Promising therapeutic target in atherosclerosis. World Journal of Experimental Medicine, 2015. 5(3): p. 154-159.
53. Alexander, W.S., et al., SOCS1 Is a Critical Inhibitor of Interferon γ Signaling and Prevents the Potentially Fatal Neonatal Actions of this Cytokine. Cell, 1999. 98(5): p. 597-608.

指導教授 徐沺(Tien-Hsu) 審核日期 2018-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明