參考文獻 |
[1] D. Finkenthal, B. Greco, R. Halsey, L. Pena, S. Rodecker, et al., “Introduction to the electromagnetic spectrum,” General Atomic, 1996.
[2] A. Mahabal, S.G. Djorgovski, R. Williams, A. Drake, C. Donalek, et al., “Towards Real-time Classification of Astronomical Transients, ” AIP Conference Proceedings, 2008, vol. 1082, pp. 287-293, 2008.
[3] S. G.Djorgovski et al., “Flashes in a star stream: Automated classification of astronomical transient events,” in 2012 IEEE 8th International Conference on E-Science, 2012, pp. 1-8.
[4] A. Corradi, L. Foschini, V. Pipolo and A. Pernafini, “Elastic provisioning of virtual Hadoop clusters in OpenStack-based clouds”, in Communication Workshop (ICCW), 2015 IEEE International Conference on, 2015, pp. 1914-1920.
[5] S.J. Yang, and Y.R. Chen, “Design adaptive task allocation scheduler to improve MapReduce performance in heterogeneous clouds,” Journal of Network and Computer Applications, vol. 57, pp. 61-70, 2015.
[6] M. Díaz, C. Martín, and B. Rubio, “State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing,” Journal of Network and Computer Applications, vol. 67, pp. 99-117, 2016.
[7] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, S. M. Abdulhamid, “Resource scheduling for infrastructure as a service (IaaS) in cloud computing: Challenges and opportunities,” Journal of Network and Computer Applications, vol. 68, pp. 173-200, 2016.
[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium on, 2010, pp. 1-10.
[9] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, et al., “Improving MapReduce performance through data placement in heterogeneous Hadoop clusters”, in Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1-9.
[10] A. Mesmoudi, M.S. Hacid, F. Toumani, “Benchmarking SQL on MapReduce systems using large astronomy databases,” Distributed and Parallel Databases, vol. 34, no. 3, pp. 347-378, 2016.
[11] J. Dean and S. Ghemawat “MapReduce: Simplified Data Processing on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.
[12] L. Gu and H. Li “Memory or time: performance evaluation for iterative operation on hadoop and spark,” in High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International Conference on,. 2013, IEEE, pp. 721-727.
[13] P. Basanta-Val, N. Fernández García, A. J. Wellings, N. C. Audsley, “Improving the predictability of distributed stream processors,” Future Generation Computer Systems, vol. 52, pp. 22-36, 2015.
[14] P. Basanta-Val, N. C. Audsley, A. J. Wellings, I. Gray, N. Fernandez-Garcia, “Architecting Time-Critical Big-Data Systems, ” IEEE Transactions on Big Data, vol. 2, no. 4, pp. 310-324, 2016.
[15] S. D. Ross, “Near-earth asteroid mining,” Space Industry Report, Department of Control and Dynamical Systems, Caltech, CA, 2001.
[16] M. Elvis. “How Many Ore-Bearing Asteroids? ”, Planetary and Space Science, vol. 91, pp. 20-26, 2014.
[17] D.G. Andrews , K.D. Bonner, A.W. Butterworth, H.R. Calvert, B.R. H. Dagang, et al., “Defining a successful commercial asteroid mining program”, Acta Astronautica, vol. 108, pp. 106-118, 2015.
[18] A.S. Szalay, J. Gray, G. Fekete, P. Kunszt, P. Kukol, A. Thakar, “Indexing the sphere with the hierarchical triangular mesh,” Technical Report MSR-TR- 2005-123, 2005.
[19] M.F. Wang, C.S. Huang, M.F. Tsai, B.R. Song, S.F. Su, C.H. Tang, “Generalized Analysis of Message Propagation on Social Network,” International Journal of Future Generation Communication and Networking, vol. 5, no. 2, 2012.
[20] R. Duda and P. Hart, “Use of the Hough Transformation to Detect Lines and Curves in Pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11-15, Jan. 1972.
[21] C.S. Huang, M.F. Tsai, P.H. Huang, L.D. Su, K.-S. Lee, “Distributed Asteroid Discovery System for Large Astronomical Data,” Journal of Network and Computer Applications, vol.93, pp. 27-37, 2017.
[22] C.L. Carilli and S. Rawlings, “Science with the Square Kilometre Array: Motivation, key science projects, standards and assumptions”, New Astronomy Reviews, vol. 48, no. 11-12, pp. 979-984, 2004.
[23] P. Huijse, P. Estevez, P. Protopapas, J. Principe and P. Zegers, “Computational intelligence challenges and applications on large-scale astronomical time series databases,” IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 27-39, 2014.
[24] Z.D. Stephens, S.Y. Lee, F. Faghri, R.H. Campbell, C. Zhai, et al., “Big Data: astronomical or genomical?,” PLoS Biol, vol. 13, no. 7, p. e1002195, 2015.
[25] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang, “MapTask scheduling in MapReduce with data locality: Throughput and heavy-traffic optimality,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 190-203, 2016.
[26] M. Sun, H. Zhuang, X. Zhou, K. Lu, C. Li, “HPSO: Prefetching based scheduling to improve data locality for MapReduce clusters,” in International Conference on Algorithms and Architectures for Parallel Processing, 2014, pp. 82-95.
[27] W. Wang, M. Barnard, L. Ying, “Decentralized scheduling with data locality for data-parallel computation on peer-to-peer networks,” in Communication, Control, and Computing (Allerton), 2015 53rd Annual Allerton Conference on, 2015, pp. 337-344.
[28] Q. Xie and Y. Lu, “Priority algorithm for near-data scheduling: Throughput and heavy-traffic optimality,” in Computer Communications (INFOCOM), 2015 IEEE Conference on, 2015, pp. 963-972.
[29] W. Wang and L. Ying, “Data locality in MapReduce: A network perspective,” Performance Evaluation, vol. 96, pp. 1-11, 2016.
[30] X. Bu, J. Rao, C.Z. Xu, “Interference and locality-aware task scheduling for MapReduce applications in virtual clusters,” in Proceedings of the 22nd international symposium on High-performance parallel and distributed computing, 2013, pp. 227-238.
[31] R. Sun, J. Yang, Z. Gao, Z, He, “A virtual machine based task scheduling approach to improving data locality for virtualized Hadoop,” in Computer and Information Science (ICIS), 2014 IEEE/ACIS 13th International Conference on, 2014, pp. 297-302.
[32] X. Ma, X. Fan, J. Liu, H. Jiang, K. Peng, “vLocality: Revisiting Data Locality for MapReduce in Virtualized Clouds,” IEEE Network, vol. 31, no. 1, pp. 28-35, 2017.
[33] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, X. Shi, “Evaluating MapReduce on Virtual Machines: The Hadoop Case,” in IEEE International Conference on Cloud Computing, 2009, pp. 519-528.
[34] S. Moon, J. Lee, and Y. S. Kee, “Introducing SSDs to the Hadoop MapReduce Framework,” in Cloud Computing (CLOUD), 2014 IEEE 7th International Conference on, 2014, pp. 272-279.
[35] Y.H. Tsai, “Distributed Astronomy Sequential Pattern Analysis System Using Hadoop Platform with Weighted Suffix Tree,” master′s thesis, Department of Computer Science and Information Engineering, National Central University, Taiwan, 2015.
[36] H.C. Chan, “Distributed Hierarchical Triangular Mesh Index Base on Hadoop,” master′s thesis, Department of Computer Science and Information Engineering, National Central University, Taiwan, 2016.
[37] K. Kralevska, D. Gligoroski and H. Øverby, “Balanced locally repairable codes,” n Turbo Codes and Iterative Information Processing (ISTC), 2016 9th International Symposium on, 2016, pp. 280-284.
[38] L.D. Su, “Large Scale Sequential Pattern Mining based on Distributed Hierarchical Suffix Tree,” master′s thesis, Department of Computer Science and Information Engineering, National Central University, Taiwan, 2017.
[39] J. Kubica, L. Denneau, T. Grav, J. Heasley, R. Jedicke, et al., “Efficient intra-and inter-night linking of asteroid detections using kd-trees,” Icarus, vol. 189, no. 1, pp. 151-168, 2007.
[40] L. Denneau et al., “The Pan-STARRS Moving Object Processing System,” Publications of the Astronomical Society of the Pacific, vol. 125, no. 926, pp. 357-395, Apr.2013.
[41] P. Vereš et al., “Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1--Preliminary results,” Icarus, vol. 261, pp. 34-47, 2015.
[42] T. M. Brown et al., “Las Cumbres Observatory Global Telescope Network,” Publ. Astron. Soc. Pacific, vol. 125, no. 931, pp. 1031-1055, 2013.
[43] N.M. Law, S.R. Kulkarni, R.G. Dekany, E.O. Ofek, R.M. Quimby, et al., “The Palomar Transient Factory: System Overview, Performance, and First Results,” Publ. Astron. Soc. Pacific, vol. 121, pp. 1395-1408, 2009.
[44] A. Rau, S.R. Kulkarni, N.M. Law, J.S. Bloom, D. Ciardi, et al. “Exploring the Optical Transient Sky with the Palomar Transient Factory,” Publications of the Astronomical Society of the Pacific, vol. 121, no. 886, pp.1334-1351, 2009.
[45] C.K. Chang, W.H. Ip, H.W. Lin, Y.C. Cheng, C.C. Ngeow, et al., “Asteroid Spin-rate Study Using the Intermediate Palomar Transient Factory,” The Astrophysical Journal Supplement Series, vol. 219, no. 2, p. 27, 2015.
[46] J. Gray, A. Szalay, and G. Fekete, “Using table valued functions in SQL Server 2005 to implement a spatial data library,” Technical Report MSR-TR-2005-122, 2005.
[47] Z. Lv et al., “Spatial indexing of global geographical data with HTM,” in Geoinformatics, 2010 18th International Conference on, 2010, pp. 1-6.
[48] P. Weiner, “Linear Pattern Matching Algorithm,” in Switching and Automata Theory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium on, 1973, pp. 1-11.
[49] P. Ambs, S. H. Lee, Q. Tian, Y. Fainman, “Optical implementation of the Hough transform by a matrix of holograms”, Applied Optics, vol.25, no. 22, pp. 4039-4045, 1986.
[50] C. Hollitt, “A convolution approach to the circle Hough transform for arbitrary radius,” Machine Vision and Applications, vol. 24, no.4, pp. 683-694, 2013.
[51] Y. Chen, W. Li, J. Li, T. Wang, “Novel parallel Hough Transform on multi-core processors,” in Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, 2008, pp. 1457-1460.
[52] R. K. Satzoda, S. Suchitra, and T. Srikanthan, “Parallelizing the Hough Transform Computation,” IEEE Signal Process. Lett., vol. 15, pp. 297-300, 2008.
[53] S. S. Sathyanarayana, R. K. Satzoda, and T. Srikanthan, “Exploiting Inherent Parallelisms for Accelerating Linear Hough Transform,” IEEE Trans. Image Process., vol. 18, no. 10, pp. 2255-2264, 2009.
[54] Z. H. Chen, A. W.Y. Su, and M.T. Sun, “Resource-efficient FPGA architecture and implementation of hough transform,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 8, pp. 1419-1428, 2012.
[55] X. Zhou, N. Tomagou, Y. Ito, and K. Nakano, “Efficient Hough transform on the FPGA using DSP slices and block RAMs”, in Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International, 2013, pp. 771-778.
[56] X. Lu, L. Song, S. Shen, K. He, S. Yu and N. Ling, “Parallel Hough Transform-based straight line detection and its FPGA implementation in embedded vision,” Sensors, vol. 13, no. 7, pp. 9223-9247, 2013.
[57] T. White, “Hadoop: The definitive guide,” O’Reilly Media, Inc., 2012.
[58] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, “Learning spark: lightning-fast big data analysis,” O’Reilly Media, Inc., 2015.
[59] M. Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction for in-memory,” Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, 2012, p. 2.
[60] R. Smite, “Creative Networks.” Rearview Mirror of Eastern European History. Amsterdam. Institute of Network Cultures, 2012.
[61] L. Wang et al., “Cloud computing: a perspective study,” New Gener. Comput., vol. 28, no. 2, pp. 137-146, 2010.
[62] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, et al., “Apache hadoop yarn: Yet another resource negotiator”, Proc. 4th Annu. Symp. Cloud Comput. - SOCC ’13, pp. 1-16, 2013. |