參考文獻 |
[1] S. Seth et al., "A dynamically biased multiband 2G/3G/4G cellular transmitter in 28 nm CMOS," IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1096-1108, May 2016.
[2] M. Collados, H. Zhang, B. Tenbroek and H. H. Chang, "A low-current digitally predistorted direct-conversion transmitter with 25% duty-cycle passive mixer," IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 726-731, April 2014.
[3] D. Jeong, S. Lee, H. Lee and B. Kim, "Ultra-low power direct-conversion 16 QAM transmitter based on Doherty power amplifier," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 528-530, July 2016.
[4] Y. Kishiyama, "Future radio access for 5G", invited talk in The International Workshop on Cloud Cooperated Heterogeneous Networks, Osaka, Japan, 23 Oct., 2013.
[5] X. Ding and L. Zhang, "A high-efficiency GaAs MMIC power amplifier for multi-standard system," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 55-57, Jan. 2016.
[6] R. Giofré, P. Colantonio and F. Giannini, "A design approach for two stages GaN MMIC PAs with high efficiency and excellent linearity," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 46-48, Jan. 2016.
[7] H. K. Chiou, K. C. Lin, W. H. Chen and Y. Z. Juang, "A 1-V 5-GHz self-bias folded-switch mixer in 90-nm CMOS for WLAN receiver," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 59, no. 6, pp. 1215-1227, June 2012.
[8] A. Mirzaei, D. Murphy and H. Darabi, "Analysis of direct-conversion IQ transmitters with 25% duty-cycle passive mixers," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, no. 10, pp. 2318-2331, Oct. 2011.
[9] H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers: a simple physical model," IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000.
[10] P. R. Gray, P. I. Hunt, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. John Wiley & Sons Inc, fifth ed., 2009.
[11] H. Darabi and J. Chiu, "A noise cancellation technique in active RF-CMOS mixers," IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628-2632, Dec. 2005.
[12] A. Mirzaei, D. Murphy and H. Darabi, "Analysis of direct-conversion IQ transmitters with 25% duty-cycle passive mixers," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, no. 10, pp. 2318-2331, Oct. 2011.
[13] Z. Lin, P. I. Mak and R. P. Martins, "A 0.14-mm2 1.4-mW 59.4-dB-SFDR 2.4-GHz ZigBeeWPAN receiver exploiting a “split-LNTA + 50% LO” topology in 65-nm CMOS" IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1525-1534, July 2014.
[14] C. Andrews and A. C. Molnar, "Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 12, pp. 3092-3103, Dec. 2010.
[15] A. Niknejad and H. Hashemi, mm-Wave Silicon Technology 60GHz and Beyond (2007) 129.
[16] T. Yao et al., “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[17] 邱煥凱, 林貴城, “ADS 應用於射頻功率放大器設計與模擬“, 國立清華大學出版社, 2014
[18] RF Circuit Design - by Richard Chi-Hsi Li_2009, Ch.7.2.1, p.283
[19] C. W. Kuo, H. K. Chiou and H. Y. Chung, "An 18 to 33 GHz fully-integrated Darlington Power Amplifier With Guanella-type transmission-line transformers in 0.18 m CMOS technology," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, pp. 668-670, Dec. 2013.
[20] J. H. Tsai and J. W. Wang, "An X-band half-watt CMOS power amplifier using interweaved parallel combining transformer" IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 491-493, May 2017.
[21] C. H. Li, C. N. Kuo and M. C. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS" IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[22] Zisan Zhang et al., "A 6–9GHz WiMedia UWB RF transmitter in 90nm CMOS," in Radio Freq. Integr. Circuits Symp., 2008, pp. 39-42.
[23] H. Zheng, S. Lou, D. Lu, C. Shen, T. Chan, and H. Luong, “A 3.1 GHz–8.0 GHz single-chip transceiver for MB-OFDM UWB in 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 414–426, Feb. 2009.
[24] A. Tanaka, H. Okada, H. Kodama and H. Ishikawa, “A 1.1V3.1-to-9.5 GHz MB-OFDM UWB transceiver in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 398–407.
[25] Y.-J. Ko, S. Stapleton, and R. Sobot, “ Ku-band image rejection sliding- IF transmitter in 0.13-μm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 2091–2107, Aug. 2011.
[26] M. Camponeschi et al., “A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 141–143, Mar. 2012.
[27] S. Seth et al., "A dynamically biased multiband 2G/3G/4G cellular transmitter in 28 nm CMOS," IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1096-1108, May 2016.
[28] J. Kaukovuori, K. Stadius, J. Ryynanen and K. A. I. Halonen, "Analysis and design of passive polyphase filters," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 55, no. 10, pp. 3023-3037, Nov. 2008.
[29] A. Mirzaei, H. Darabi, J. C. Leete, X. Chen, K. Juan and A. Yazdi, "Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers," IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2678-2688, Oct. 2009.
[30] X. He and J. van Sinderen, "A low-power, low-EVM, SAW-less WCDMA transmitter using direct quadrature voltage modulation," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3448-3458, Dec. 2009.
[31] D. Yang, C. Andrews and A. Molnar, "Optimized design of N-phase passive mixer-first receivers in wideband operation," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 62, no. 11, pp. 2759-2770, Nov. 2015.
|