以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:57 、訪客IP:3.142.124.83
姓名 陳妗仰(Jin-Yang Chen) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 砷化銦鎵/銻砷化鎵第二型異質接面P通道穿隧場效電晶體之設計與模擬
(Design and Simulation of P-channel InGaAs/GaAsSb Staggered Hetero-Junction Tunneling Field-Effect Transistors)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 過去五十年,積體電路中的電晶體密度隨著摩爾定律持續增加,積體電路之功率消耗與功率密度也快速提升,所造成的熱效應已是未來積體電路發展的瓶頸之一。為解決此問題,最直接的方式便是降低元件操作電壓。但為了維持效能,電晶體之臨限電壓(threshold voltage)必須跟著低,同時次臨限擺幅與關閉電流也必須降低。傳統金氧半場效電晶體(MOSFETs)是以載子漂移-擴散的機制傳導,其次臨限擺幅(subthreshold swing)被限制在60 mV/decade 以上。若是改以穿隧機制作為電晶體之導電機制,其次臨限擺幅則可突破此限制,成為下一世代低耗能積體電路之選項。
由於三五族材料中的砷化銦鎵/銻砷化鎵(InGaAs/GaAsSb)可行成第二型異質接面,特別適合穿隧式場效電晶體之用,透過不同成分組合可調整穿隧能障,優化元件電性。本研究即以此異質接面為基礎,設計P通道穿隧式場效電晶體,利用TCAD模擬軟體建立穿隧式場效電晶體物理模型,模擬不同成分砷化銦鎵/銻砷化鎵的能帶組合、摻雜濃度變化、閘極位置、氧化層和通道接面的缺陷,對元件特性的影響。根據模擬結果,選擇具有低關閉電流適合用於低功耗產品上,且與磷化銦(InP)基板晶格匹配的In0.53Ga0.47As/GaAs0.51Sb0.49組合持續優化。
在元件特性優化上,於源極和通道接面加入一層銻化鎵材料,異質接面處的等效能障由0.63 eV 降到0.38 eV,在VDS = - 0.3 V,VGS = - 0.5 V時的汲極電流提高到24 μA/μm,關閉電流依然維持在4×10-11 μA/μm,用此方法來調整接面能障能有效提升元件特性。而加入多層過渡層後,在VDS = - 0.3 V,VGS = - 0.5 V 時的汲極電流將可再提高到34 μA/μm 同時兼顧低關閉電流。為了持續優化直流特性,改善元件開關速度,最後選擇In0.53Ga0.47As/GaAs0.51Sb0.49 組合的低關閉電流與InAs/GaAs0.1Sb0.9 組合的高導通電流這兩個優勢相互結合,成功地將導通電流提升達86 μA/μm,而臨限電壓可以降低到 - 40 mV,令元件可以更快導通。而為了降低多種材料上的磊晶成本,因此將通道與汲極替換成其他成分的GaAsSb,透過不同材料間的晶格不匹配關係來分別引入伸張(tensile) 和壓縮(compressive)應變效應,當壓縮應變達到2 %後,汲極電流增加到28 μA/μm,與單層插入層有相同效果,完成砷化銦鎵/銻砷化鎵第二型異質接面P 通道穿隧場效電晶體之設計與模擬。摘要(英) With the progress of semiconductor science and technology, the number of metal-oxide-semiconductor field-effect transistors (MOSFETs) in integrated circuits continuely increases over the last 50 years following Moore’s Law. The rapidly increasing power consumption associated with transistor density becomes one of the major bottlenecks in the development of future integrated circuits. An intuitive approach to this problem is to lower the operation voltage and threshold voltage simultaneously. Since the channel current of MOSFETs is governed by the drift-diffusion mechanism, their subthreshold swing (S.S.) is limited to 60 mV/decade or higher at room temperature. Whereas, tunneling field-effect transistors (TFETs) is considered as a promising candidate device for low voltage and low power integrated circuits, which is based on band-to-band tunneling (BTBT) to generate current that can break through the limit of S.S. (60 mV/decade).
In III-V compound semiconductors, InGaAs/GaAsSb material system allows us to modulate band lineups by changing their compositions to form staggered type heterojunction TFETs. In this study, pTFETs based on this material system is investigated using Synopsys Sentaurus TCAD tool. The effects of band alignment, doping concentration, gate position and traps at III-V/oxide interface on the electrical properties of InGaAs/GaAsSb TFETs are systematically studied. Simulation results show that there is a strong correlation between tunneling barrier (Ebeff) with on/off-currents (ION and IOFF). Higher Ebeff leads to lower ION and IOFF, while the lower Ebeff results in higher ION and IOFF.
To reach high ION and low IOFF, In0.53Ga0.47As/GaAs0.51Sb0.49 TFET with a GaSb insertion layer is proposed to reduce Ebeff from 0.63 eV to 0.38 eV at the source/channel junction, which leads to an ION current equal to 24 μA/μm at VDS = - 0.3 V,VGS = - 0.5 V, while IOFF remains at 4×10-11 μA/μm at VGS = 0 V, simultaneously. To improve the device performance further and increase the switching speed, a low IOFF of In0.53Ga0.47As/GaAs0.51Sb0.49 TFET combination with a high ION of InAs/GaAs0.1Sb0.9 insertion layer is proposed. Based on this design, ION can be further enhanced to 86 μA/μm and the threshold voltage can be reduced to - 40 mV. The effects of strain introduced by lattice mismatch between GaAsSb and In0.53Ga0.47As on the device performance are also studied. A 2 % compressive strain makes ION increase to 28 μA/μm, which is equal to the ION of In0.53Ga0.47As/GaAs0.51Sb0.49 TFET with a GaSb insertion layer, and its IOFF also remains at 10-11 μA/μm.關鍵字(中) ★ P型穿隧式場效電晶體
★ 砷化銦鎵
★ 銻砷化鎵
★ 電腦輔助設計關鍵字(英) ★ pTFET
★ InGaAs
★ GaAsSb
★ TCAD論文目次 摘要 .................................................... i
Abstract .............................................. iii
誌謝 .................................................... v
目錄 ................................................... vi
圖目錄 ................................................. ix
表目錄 ................................................ xiv
第一章 導論 .............................................. 1
1.1 背景與相關研究 ....................................... 1
1.2 研究動機 ........................................... 15
1.3 論文架構 ........................................... 16
第二章 穿隧式場效電晶體原理及模型 ......................... 17
2.1 前言 ............................................... 17
2.2 穿隧理論與穿隧電流 .................................. 18
2.3 穿隧式場效電晶體的操作原理 ........................... 23
2.4 穿隧物理模型 ........................................ 24
2.5 模擬穿隧式場效電晶體的重要參數 ....................... 27
2.6 結論 ............................................... 30
第三章 P 通道砷化銦鎵/銻砷化鎵雙閘極異質接面穿隧式場效電晶體之
基本電性模擬與探討 ...................................... 31
3.1 前言 ............................................... 31
3.2 砷化銦鎵/銻砷化鎵雙閘極異質結構設計 ................... 32
3.3 摻雜濃度改變的特性模擬與探討.......................... 37
3.3.1 源極濃度變化 ...................................... 38
3.3.2 汲極濃度變化 ...................................... 41
3.3.3 源極濃度和汲極濃度優化後電性 ....................... 44
3.4 閘極位置變化的特性模擬與探討.......................... 46
3.4.1 閘極在源極端(Gate-to-Source)的位置變化 ............. 46
3.4.2 閘極在汲極端(Gate-to-Drain)的位置變化 .............. 50
3.5 缺陷位置分布的模擬與分析 ............................. 55
3.6 結論 ............................................... 58
第四章 P 通道砷化銦鎵/銻砷化鎵雙閘極異質接面穿隧式場效電晶體之
能帶結構優化模擬探討 .................................... 60
4.1 前言 ............................................... 60
4.2 砷化銦鎵/銻砷化鎵等效能障(Ebeff)變化的電性模擬與探討 .. 61
4.3 具插入層之砷化銦鎵/銻砷化鎵的電性模擬與探討 ........... 66
4.3.1 不同插入層厚度之模擬與探討 ......................... 66
4.3.2 多層插入層優化之模擬與探討 ......................... 69
4.4 In0.53Ga0.47As/GaAs0.51Sb0.49 與InAs/GaAs0.1Sb0.9 的組合之電性模擬與探討 ...................................... 72
4.5 應變效應影響 ........................................ 76
4.6 結論 ............................................... 84
第五章 總結與未來展望 ................................... 86
參考文獻 ............................................... 87參考文獻 [1] H. Iwai, "Future of Logic Nano CMOS Technology," 2014.
[2] A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy efficient electronic switches," Nature, vol. 479, pp. 329-337, 2011.
[3] 吳治成, "具高導通電流常關型銻砷化/砷化銦鎵異質接面穿隧式場
效電晶體之研究," 中央大學電機工程學系學位論文, pp. 1-62, 2016.
[4] J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors," Physical review letters, vol. 93, p. 196805, 2004.
[5] S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, et al., "Experimental demonstration of 100nm channel length In 0.53 Ga 0.47 As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications," in Electron Devices Meeting (IEDM), pp. 1-3, 2009.
[6] D. Mohata, R. Bijesh, S. Mujumdar, C. Eaton, R. Engel-Herbert, T. Mayer, et al., "Demonstration of MOSFET-like on-current performance in arsenide/antimonide tunnel FETs with staggered hetero-junctions for 300mV logic applications," in Electron Devices Meeting (IEDM), pp. 33.5. 1-33.5. 4, 2011.
[7] R. Bijesh, H. Liu, H. Madan, D. Mohata, W. Li, N. Nguyen, et al., "Demonstration of In0.9Ga0.1As/GaAs0.18Sb0.82 near broken-gap tunnel FET with ION= 740μA/μm GM= 700μS/μm and Gigahertz Switching Performance at VDS= 0.5 V," in Electron Devices Meeting (IEDM), p.28.2, 2013.
[8] G. Dewey, B. Chu-Kung, J. Boardman, J. Fastenau, J. Kavalieros, R. Kotlyar, et al., "Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep subthreshold swing," in Electron Devices Meeting (IEDM), pp. 33.6. 1-33.6. 4, 2011.
[9] X. Zhao, A. Vardi, and J. A. del Alamo, "InGaAs/InAs heterojunction vertical nanowire tunnel FETs fabricated by a top-down approach," in Electron Devices Meeting (IEDM), pp. 25.5. 1-25.5. 4, 2014.
[10] R. Pandey, H. Madan, H. Liu, V. Chobpattana, M. Barth, B. Rajamohanan, et al., "Demonstration of p-type In0.7Ga0.3As/GaAs0.35Sb0.65 and n-type GaAs0.4Sb0.6/In0.65Ga0.35As complimentary heterojunction vertical tunnel FETs for ultra-low power logic," in VLSI
Technology, pp. T206-T207, 2015.
[11] B. Rajamohanan, D. Mohata, Y. Zhu, M. Hudait, Z. Jiang, M. Hollander, et al., "Design, fabrication, and analysis of p-channel arsenide/antimonide hetero-junction tunnel transistors," Journal of Applied Physics, vol. 115, p. 044502, 2014.
[12] D. Cutaia, K. E. Moselund, H. Schmid, M. Borg, A. Olziersky, and H. Riel, "Complementary III–V heterojunction lateral NW Tunnel FET technology on Si," in VLSI Technology, pp. 1-2, 2016.
[13] R. Pandey, C. Schulte-Braucks, R. Sajjad, M. Barth, R. Ghosh, B. Grisafe, et al., "Performance benchmarking of p-type In0.65Ga0.35As/GaAs0.4Sb0.6 and Ge/Ge0.93Sn0.07 hetero-junction tunnel FETs," in Electron Devices Meeting (IEDM), pp. 19.6. 1-19.6. 4, 2016.
[14] P. Long, J. Huang, M. Povolotskyi, D. Verreck, J. Charles, T. Kubis, et al., "A tunnel FET design for high -current, 120 mV operation," in Electron Devices Meeting (IEDM), pp. 30.2. 1-30.2. 4, 2016.
[15] A. Afzalian and M. Passlack, "Scaling perspective for III-V broken gap nanowire TFETs: An atomistic study using a fast tight-binding modespace NEGF model," in Electron Devices Meeting (IEDM), pp. 30.1. 1-30.1. 4, 2016.
[16] H. Carrillo-Nunez, M. Luisier, and A. Schenk, "Analysis of InAs-Si heterojunction double-gate tunnel FETs with vertical tunneling paths," in Solid State Device Research Conference (ESSDERC), pp. 302-305, 2015.
[17] J. Z. Huang, P. Long, M. Povolotskyi, G. Klimeck, and M. J. Rodwell, "P-type tunnel FETs with triple heterojunctions," IEEE Journal of the Electron Devices Society, vol. 4, pp. 410-415, 2016.
[18] A. Seabaugh, "The tunneling transistor," IEEE spectrum, vol. 50, pp. 35- 62, 2013.
[19] S. M. Sze and K. K. Ng, "Physics of semiconductor devices": John wiley & sons, 2006.
[20] J. Knoch and J. Appenzeller, "A novel concept for field-effect transistors the tunneling carbon nanotube FET," in Device Research Conference Digest, pp. 153-156, 2005.
[21] "Sentaurus™ Device User Guide Version-K-2015.06," June 2015.
[22] E. O. Kane, "Theory of tunneling," Journal of Applied Physics, vol. 32, pp. 83-91, 1961.
[23] L. De Michielis, M. Iellina, P. Palestri, A. M. Ionescu, and L. Selmi, "Tunneling path impact on semi-classical numerical simulations of TFET devices," in Ultimate Integration on Silicon (ULIS), pp. 1-4, 2011.
[24] R. Chu, 朱瑞霖, T. Chiang, 江宗鴻, W. Hsueh, 薛惟仁, et al., "Passivation of GaSb using molecular beam epitaxy Y2O3 to achieve low interfacial trap density and high-performance self-aligned inversionchannel p-metal-oxide-semiconductor field-effect-transistors," Applied Physics Letters, vol. 105, p. 182106, 2014.
[25] 蘇冠華, "經電漿處理之氧化鉿/氧化鋁金氧半電容界面缺陷研究,"
中央大學電機工程學系學位論文, pp. 1-74, 2017.
[26] C. G. Van de Walle, "Band lineups and deformation potentials in the model-solid theory," Physical review B, vol. 39, p. 1871, 1989.
[27] I. Vurgaftman, J. Meyer, and L. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys," Journal of applied physics, vol. 89, pp. 5815-5875, 2001.
[28] C. Pan and C. Lee, "Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications," Journal of Applied Physics, vol. 113, p. 043112, 2013.指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2018-1-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare