參考文獻 |
[1] K. H. Chen, C. Lee and S. I. Liu, "A dual-band 61.4∼63GHz/75.5∼77.5GHz CMOS receiver in a 90nm technology," 2008 IEEE Symposium on VLSI Circuits, Honolulu, HI, 2008, pp. 160-161.
[2] B. Afshar, Y. Wang and A. M. Niknejad, "A Robust 24mW 60GHz Receiver in 90nm Standard CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 182-605.
[3] N. Zhang and K. O. Kenneth, "W-band pulsed radar receiver in low cost CMOS," IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, 2010, pp. 1-4.
[4] J. Luo, L. Zhang, W. Zhu, L. Zhang, Y. Wang and Z. Yu, "A 64dB gain 60GHz receiver with 7.1dB noise figure for 802.11ad applications in 90nm CMOS," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 2401-2404.
[5] D. Lal, M. Abbasi and D. S. Ricketts, "A broadband, compact 140–170GHz double side-band receiver in 90nm SiGe technology," 2016 46th European Microwave Conference (EuMC), London, 2016, pp. 687-690.
[6] A. Tang, G. Virbila, D. Murphy, F. Hsiao, Y. Wang, Q. Gu, Z. Xu, Y. Wu, M. Zhu, and M.-C. F. Chang, “A 144 GHz 0.76 cm-resolution 14 sub-carrier SAR phase radar for 3-D imaging in 65 nm CMOS,” in IEEE Int. Solid-State Circuits Conf., Feb. 2012, pp. 264–265.
[7] E. Ojefors, B. Heinemann, and U. R. Pfeiffer, “Subharmonic 220- and 320-GHz sige HBT receiver front-ends,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1397–1404, 2012.
[8] M. Elkhouly, M. Yanfie, S. Glisic, C. Meliani, F. Ellinger, J.C. Scheytt, "A 240 GHz direct conversion IQ receiver in 0.13 μm SiGe BiCMOS technology," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp.305- 308, 2-4 June 2013
[9] S. V Thyagarajan et al, “A 240GHz wideband QPSK receiver in 65nm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, RFIC, pp. 357–360, 2014.
[10] N. Sarmah et al., “A Wideband Fully Integrtated SiGe Chipset for High Data Rate Communication at 240 GHz,” European Microwave Integrated Circuits Conference, 3-4 Oct 2016.
[11] P. R. Vazquez, J. Grzyb, N. Sarmah, B. Heinemann and U. R. Pfeiffer, "A 219–266 GHz fully-integrated direct-conversion IQ receiver module in a SiGe HBT technology," 2017 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, Germany, 2017, pp. 261-264.
[12] D. Fritsche, G. Tretter, P. Stärke, C. Carta and F. Ellinger, "A Low-Power SiGe BiCMOS 190-GHz Receiver With 47-dB Conversion Gain and 11-dB Noise Figure for Ultralarge-Bandwidth Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 10, pp. 4002-4013, Oct. 2017.
[13] C. L. Ko, C. H. Li, C. N. Kuo, M. C. Kuo and D. C. Chang, "A 210-GHz Amplifier in 40-nm Digital CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 6, pp. 2438-2446, June 2013.
[14] Y. Wang, B. Afshar, L. Ye, V. C. Gaudet and A. M. Niknejad, "Design of a Low Power, Inductorless Wideband Variable-Gain Amplifier for High-Speed Receiver Systems," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 696-707, April 2012.
[15] Y. L. Yen, C. N. Kuo, C. F. Lee and K. Chen, "DC-to-5-GHz variable gain amplifier for high speed DSO," VLSI Design, Automation and Test(VLSI-DAT), Hsinchu, 2015, pp. 1-4.
[16] Peng, et al.,” A 94 GHz 3D Image Radar Engine With 4TX/4RX Beamforming Scan
Technique in 65 nm CMOS Technology,” IEEE J. Solid-State Circuits, vol.50, no.3, pp.
656-668, Mar. 2015.
[17] J. Lee, et al.,” A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS
Technology,”IEEE J. Solid-State Circuits, vol.45, no.12, pp. 2746-2756, Dec. 2010.
[18] Su, et al., “A 78-102 GHz Front-End Receiver in 90 nm CMOS Technology”, IEEE
Microw. Wireless Compon. Lett., vol. 21, no. 9, Sep. 2011.
[19] D. F. Williams et al., “Calibration for millimeter-wave silicon transistor characterization,”IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 658-668, Mar. 2014.
[20] H. Elwan, A. Tekin and K. Pedrotti, "A Differential-Ramp Based 65 dB-Linear VGA Technique in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2503-2514, Sept. 2009.
[21] H. Elwan, A. Tekin, K. Pedrotti and A. Emira, "A 49-dB continuous linear-in-dB IF VGA technique," 2009 IEEE International Symposium on Circuits and Systems, Taipei, 2009, pp. 2962-2965.
[22] J. Park, C. H. Lee, B. S. Kim and J. Laskar, "Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4372-4380, Dec. 2006.
[23] Sarkas et al., "Silicon-Based radar and imaging sensors operationg above 120 GHz, "
IEEE MIKON , May. 2012.
[24]C. L. Ko, C. H. Li, C. N. Kuo, M. C. Kuo and D. C. Chang, "A 8-mW 77-GHz band CMOS LNA by using reduced simultaneous noise and impedance matching technique," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 2988-2991.
[25] Zhou, et al.,” A W-Band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems,” IEEE J. Solid-State Circuits, vol.46, no.2, Feb. 2011.
|