博碩士論文 962202004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.142.210.157
姓名 郭旻彥(Ming-Yen Kuo)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study)
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ 麥角固醇對含膽固醇的脂雙層膜的影響
★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes
★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質
★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質★ The physical properties of phytosterol-containing lipid bilayers
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 固醇結構對PC膜物理特性的影響★ 人造細胞膜的相行為及脂質-固醇交互作用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 人造細胞膜中的液態區塊(liquid domain)常被當成研究細胞膜上脂質浮排(lipid raft)的模型。研究指出細胞膜處於液相有序(liquid order-lo)及液相無序(liquid disorder-ld) 的共存態,而 lo 態大部份由具有高相變溫度(melting temperature-Tm)的脂質分子及固醇類(sterol)所構成,ld 態大部份由具低相變溫度的脂質分子組成。本論文中利用核磁共振儀(2H-NMR)研究由高相變溫度脂質分子 DPPC,低相變溫度脂質分子 POPC,及固朜類麥角固醇(ergosterol)或膽固醇(cholesterol)所組成的人造細胞膜的相行為及特性。為了觀察每種脂質分子,POPC 及 DPPC 的碳鏈分別以氘分子標示,隨著溫度增加,擷取 NMR 光譜訊號。
我們的結果顯示在所研究的二種或三種成份組成的細胞膜中,DPPC 碳鏈的有序程度都比 POPC 高。在 1:1 DPPC/POPC 細胞膜中,我們觀察到在特定的溫度區間內存在 so 及 ld 態混合相。在含固醇的膜中,我們發現會促使 lo 相的生成,而脂質-膽固醇的交互作用比脂質-麥角固醇的交互作用強。另外,麥角固醇對脂質間交互作用的影響也不如膽固醇的影響大。膽固醇明顯地增進 DPPC-POPC 間的交互作用且此類經由膽固醇而產生的交互作用在含膽固醇的膜中相當重要。
摘要(英) Liquid domains in model membranes are frequently studied as models of lipid raft domain in plasma membrane. Studies show that membrane is in lo+ld phase coexistence that lo phase is believed to enrich in sterol and high melting-temperature (Tm) lipid while ld phase is formed by low Tm lipid. In this work, we study the phase behaviors and properties of binary and ternary mixture containing Dipalmitoyl- phosphatidylcholine (DPPC) as high Tm lipid, Palmitoyloleoylphosphatidylcholine (POPC) as low Tm lipid, and ergosterol or cholesterol as sterol using 2H-NMR. For the experiment, POPC and DPPC are deuterium-labeled in turn, such that information regarding each lipid component can be obtained. NMR spectra were taken as a function of temperature.
The result shows that the chain order of DPPC is greater than that of POPC in all mixtures studied. In 1:1 DPPC/POPC binary mixture, so+ld phase coexistence is observed in a wide temperature range. The presence of sterol promotes the formation of lo phase in ternary mixtures. Lipid-cholesterol interactions are stronger than lipid-ergosterol interactions within 1:1:1 DPPC/POPC/sterol. Furthermore, the influence of ergosterol on the lipid-lipid interactions is not as robust as that of cholesterol. Cholesterol enhances the DPPC-POPC interaction significantly and super exchange coupling between DPPC and POPC via cholesterol is important.
關鍵字(中) ★ 生物物理 關鍵字(英) ★ biophysic
論文目次 Abstract in Chinese I
Abstract II
Acknowledgements III
Table of Content IV
List of Figures VI
List of Tables VIII
Chapter 1 Introduction 1
Chapter 2 Nuclear Magnetic Resonance 5
2.1 Zeeman Effect 5
2.2 Quadrupolar Interaction 6
2.3 Powder Spectrum 7
2.4 SCD and Quadrupolar Splitting 9
2.5 Phase Diagram and First Moment M1 10
Chapter 3 Experimental Materials and Methods 13
3.1 Sample Preparation 13
3.2 NMR hardware 14
3.3 Estimation of Domain Composition 16
3.4 DePaked Spectrum 18
3.5 Estimation of Lipid Cross-sectional Area 19
Chapter 4 Results 21
4.1 1:1 DPPC/POPC study 21
4.2 1:1:1 DPPC/POPC/Ergosterol study 24
4.3 1:1:1 DPPC/POPC/Choelsterol study 30
Chapter 5 Discussion 33
Chapter 6 Conclusions 40
References 42
Appendix 1 Cross-sectional Area at 33oC 45
參考文獻 [1] R. Krivanek, L. Okoro, and R. Winter. Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. Biophys. J. 94 (2008) 3538-3548.
[2] K. J. Tierney, D. E. Block, and M. L. Longo. Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol. Biophys. J. 89 (2005) 2481-2493.
[3] K. Simens, and E. Ikonen. How cells handle cholesterol. Science 290 (2000) 1721-1726.
[4] P. L. Yeagle. Cholesterol and the cell membrane. Biochim. Biophys. Acta. 822 (1985) 267–287.
[5] X. Xu, and E. London. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39 (2000) 843–849.
[6] K. Simons, and E. Ikonen. Functional rafts in cell membranes. Nature 387 (1997) 569-572.
[7] K. Simens, and R. Ehehalt. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110 (2002) 597-603.
[8] K. Simens, and D.Toomre. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1 (2000) 31-41.
[9] J. Finean. Interaction between cholesterol and phospholipid in hydrated bilayer. Chem. Phys. Lipids 54 (1990) 147–156.
[10] P. L. Yeagle. Modulation of membrane function by cholesterol, Biochimie. 73 (1990) 1303–1310.
[11] A. Wisniewska, J. Draus, and W.K. Subczynski. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes, Cell. Mol. Biol. Lett. 8 (2003) 147–159.
[12] E. Zinser, C. D. Sperka-Gottlieb, E. V. Fasch, S. D. Kohlwein, F. Paltauf, and G. Daum. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol. 173 (1991) 2026-2034.
[13] N. Mbongo, P. M. Loiseau, M. A. Billion, and M. Robert-Gero. Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimivrob. Agents Chemother. 42 (1998) 352-357.
[14] J. G. Beck, D. Mathieu, C. Loudet, S. Buchoux, and E. J. Dufourc. Plant sterols in “rafts”: a better way to regulate membrane thermal shocks. FASEB. J. 8 (2007) 1714-1723.
[15] A. Arora, H. Raghuraman, and A. Chattophdhyay. Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach. Biochem. Biophys. Res. Commun. 318 (2004) 920-926.
[16] Y.-W. Hsueh, M.-T. Chen, P. J. Patty, C. Code, J. Cheng, B. J. Frisken, M. Zuckermann, and J. Thewalt. Ergosterol in POPC membranes: physical properties and comparison with structurally similar sterols. Biophys. J. 92 (2007) 1606-1615.
[17] J.A. Urbina, S. Perkerar, H.-B. Le, J. Patterson, B. Montez, and E. Oldfield. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy, Biochim. Biophys. Acta 1238 (1995) 163–176.
[18] J. Pencer, M.-P. Nieh, T. A. Harroun, S. Krueger, C Adams, and J Katsaras. Bilayer thickness and thermal response of dimyristoylphosphatidylcholine unilamellar vesicles containing cholesterol, ergosterol and lanosterol: A small-angle neutron scattering study. Biochim. Biophys. Acta 1720 (2005) 84-91.
[19] L. J. Korstanje, G. van Ginkel, and Y. Levine. Effects of steroid molecules on the dynamical structure of dioleoylphosphatidylcholine and digalactosyldiacylcly- cerol bilayers. Biochim. Biophys. Acta 1022 (1990) 155– 162.
[20] C. Bernsdorff, and R. Winter, Differential properties of the sterols cholesterol, ergosterol, b-sitosterol, trans-7-dehydrocholesterol, stigmasterol andlanosterol on DPPC bilayer order, J. Phys. Chem., B 107 (2003) 10658– 10664.
[21] X. Xu, R. Bittman, G. Duportail, D. Heissler, C. Vilcheze, and E. London. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (Rafts). J. Biol. Chem. 276 (2001) 33540– 33546.
[22] B. L. Stottrup, and S. L. Keller. Phase behavior of lipid monolayers containing DPPC and cholesterol analogs. Biophys. J. 90 (2006) 3176–3183.
[23] J. L. Rubenstein, B. A. Smith, and H. M. McConnell. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. U. S. A. 76 (1979), 15–18
[24] J. R. Silvius, D. del Giudice, and M. Lafleur. Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry 35 (1996) 15198 – 15208.
[25] S. L. Veatch, and S. L. Keller. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85 (2003) 3074–3083.
[26] S. L. Veatch, and S. L. Keller. Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94 (14) (2005) 148101.
[27] A. C. Brown, K. B. Towles, and S. P. Wrenn. Measuring raft size as a function of membrane composition in PC-based systems: Part II - ternary systems. Langmuir 23 (2007) 11188-11196.
[28] E. M. Percell, H. C. Torrey, and R. V. Pound. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 69 (1946) 37-38.
[29] F. Bloch, W. W. Hansen, and M. Packard. Neuclear induction. Phys. Rev. 69 (1946) 127.
[30] M.Vist, and J. H. Davis. Phase equilibria of cholesterol/dipalmitoylphospha- tidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 29 (1990) 451–464.
[31] J. L.Thewalt, and M. Bloom. Phosphatidylcholine: cholesterol phase diagrams. Biophys. J. 63 (1992) 1176–1181.
[32] E. Sternin, J. H.Davis, and A. L. Mackay. De-pake-ing of NMR spectra. J. Magn. Reson. 55 (1983) 274
[33] H. Schäfer, B. Mädler, and F. Volke. De-Pake-ing of NMR Powder Spectra by Nonnegative Least-Squares Analysis with Tikhonov Regularization. J. Magn. Reson. A 116 (1995) 145.
[34] H. Schindler, and J. Seelig. Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. Biochemistry 14 (1975) 2283-2287.
[35] J. P. Douliez, A. Leonard, and E. J. Dufourc. Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys. J. 68 (1995) 1727-1739.
[36] I. Horia, Petrache, T. Kechuan, and J. F. Nagle. Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophys. J. 76 (1999) 2479-2487.
[37] Y. Barenholz. Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog. Lipid Res. 41 (2002) 1-5.
[38] Y. W. Hsueh, K. Gilbert, C. Trandum, M. Zuckermann, and J. Thewalt. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: A deuterium NMR and calorimetric study. Biophys. J. 88 (2005) 1799-1808.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2009-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明