博碩士論文 104326015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.135.205.146
姓名 蔡宗霖(Tsung-Lin Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用MARA與Microtox生物試驗法評估垃圾焚化殘留物之毒性潛勢
(Assessing toxicity of municipalsolid waste incineration residues with MARA and Microtox bioassays)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為瞭解焚化灰渣經碳酸鹽礦化此穩定化技術處理後的危害特性
變化,除進行溶出試驗的重金屬分析外,也利用Microbial Assay for Risk
Assessment (縮寫為MARA)與Microtox 兩種已商用套組化的生物毒性試驗
法,進一步評估焚化灰渣經碳酸鹽礦化後在「生物層面」上的無害化成效。
同時,本研究亦透過再現性、重複性及敏感度等指標評估兩方法應用在固體
廢棄物相關研究的適用性,並試圖探討化學分析與生態毒理特性之間的關聯
性,以瞭解灰渣溶出液毒性的來源及僅用化學分析是否已足夠做為固體廢棄
物無害化的依據。試驗過程中可觀察到MARA 的培養液已具有酸鹼緩衝的
能力,所以當此法應用在評估灰渣時,無需如同Microtox 那般需先對溶出
液進行pH 值的調整,以排除因高鹼性所帶來的干擾。此外,在進行Microtox
檢測時觀察到並非所有的溶出液樣品對模式生物Vibrio fischeri 的毒性效應
皆可在30 分鐘內達平衡,顯示後續的研究需留意此平衡時間上的判定,以
免低估樣品真正的毒性效應。更值得注意的是,兩方法在灰渣碳酸鹽礦化前
後的毒性判讀上最終出現相異的結果:以Microtox 檢測時發現碳酸鹽礦化
前的灰渣樣品具有較高的毒性,但MARA 的結果卻顯示出碳酸鹽礦化後的
灰渣所具有的毒性較高(此法所用的11 株菌種中,以#2 的Brevundimonas
diminuta 及#9 的Pseudomonas aurantiaca 兩類菌種對溶出液最為敏感,而與高等生物在細胞結構與生理特性上最為接近的#11 Pichia anomalia 所受到的毒性衝擊卻不甚明顯)。由於兩種方法所用的培養液背景基質皆可能顯著影
響重金屬的化學物種組成,進而影響其生物有效性程度,因此造成此差異性
的機制尚待釐清,現階段無法明確評估兩種方法孰優孰劣。即使如此,以一
般針對細菌性測試物種所訂定之20%濃度閥值來看,因灰渣在碳酸鹽礦化後
的半數影響濃度(EC50)低於Microtox 之方法偵測極限,而經MARA 檢測後
的微生物毒性濃度(MTC)也介於35.55-52.13%,故本研究經過碳酸鹽反應的灰渣與飛灰皆無法被歸類為是毒性樣品,對於生態應不致帶來顯著的負面衝
擊。
摘要(英) This study investigated the change of potential hazards associated with preand post-stabilization of municipal solid waste incinerator (MSWI) residues, including bottom ash and fly ash. Both chemical and ecotoxicological
characterization of leachates from residue TCLP were conducted: chemically, concentrations of regulated heavy metal species were quantified; toxicologically, commercial microbially-based bioassays were used to evaluate the toxicity of leachates, including Microbial Assay for Risk Assessment (MARA)- a battery test in which ten bacterial and one yeast species are incorporated, and Microtoxan in vitro testing system that employs a bioluminescent bacterium (Vibrio fischeri, aka Allivibrio fischeri) to detect toxic substances in samples. To gauge which bioassay would be more suitable for solid waste toxicity assessment, reproducibility, repeatability and sensitivity of the results obtained from both assays were compared. In addition, the correlation between chemical and ecotoxicological characteristics of the MSWI leachates was discussed. Over the course of experiments, it was found that due to the inherent buffer capacity of the assay medium, MARA did not require pH adjustment on samples; in contrast, acidification of samples to circumneutral pH was a necessitate for Microtox in order to eliminate the interference resulting from elevated hydroxide levels of MSWI residues. In addition, observable toxicity was not equilibrated in Microtox within 30 min that is often suggested by the protocol, indicating that to avoid underestimation of sample toxicity, appropriate exposure periods should be aware of. Notably, discrepancy was observed between these two assays with respect to toxicity change before and after stabilization of MSWI ash. Given that the matrix effect in the assay medium seems to play a critical role in governing the exhibited toxicity, at this point superiority of MARA over Microtox or vice versa is not ascertained. Regardless, results of this study showed that after carbonization, half effect concentrations (EC50) of the ash samples were too low to be detected in Microtox; further, the microbial toxic concentration (MTC) measured in MARA ranged from 35.55 to 52.13%, which exceeded the 20%
threshold that is generally set for the bacterial toxicity assay. Accordingly, none of the bottom and fly ashes after carbonate mineralization in this study can be classified as toxic samples and may not significantly exert adverse ecotoxicity.
關鍵字(中) ★ 生物毒性試驗
★ MARA
★ Microtox
★ 焚化底渣及飛灰
關鍵字(英) ★ toxicity bioassays
★ MARA
★ Microtox
★ municipal solid waste incinerator bottom ash and fly ash
論文目次 摘要 ..............................................I
Abstract .........................................III
目錄 ..............................................V
圖目錄 ............................................VIII
表目錄 ............................................IX
第一章 前言......................................... 1
1-1 研究緣起........................................ 1
1-2 研究目的........................................ 4
第二章 文獻回顧...................................... 5
2-1 固體廢棄物危害性評估.............................. 5
2-2 生態毒理評估..................................... 8
2-2-1 傳統生物毒性試驗................................ 8
2-2-2 生態毒理評估應用於廢棄物......................... 9
2-2-3 基於生態毒理之規範與分類廢棄物.................... 12
2-3 細菌性之生物/生態毒性試驗.......................... 15
2-3-1 Microtox 生物毒性試驗.......................... 16
2-3-2 MARA 生態毒性試驗.............................. 19
2-4 焚化灰渣處理技術.................................. 25
2-4-1 前處理技術..................................... 25
2-4-2 穩定化技術..................................... 25
2-4-3 碳酸鹽礦化技術.................................. 26
第三章 材料與方法..................................... 28
3-1 實驗流程......................................... 28
3-2 實驗材料......................................... 29
3-2-1 樣品採樣及保存.................................. 29
3-2-2 樣品之穩定化處理................................ 29
3-3 實驗藥品與試劑.................................... 30
3-4 實驗設備與儀器.................................... 31
3-5 實驗方法......................................... 33
3-5-1 毒性特性溶出程序(TCLP) ......................... 33
3-5-2 試驗規劃....................................... 34
3-6 化學分析方法...................................... 34
3-7 生態毒理分析方法.................................. 35
3-7-1 Microtox 生物毒性試驗法......................... 35
3-7-2 MARA 生態毒性試驗法............................. 36
第四章 結果與討論..................................... 39
4-1 灰渣樣品重金屬分析分析............................. 39
4-1-1 焚化灰渣原樣品重金屬溶出分析...................... 39
4-1-2 焚化灰渣經碳酸鹽礦化後之重金屬溶出濃度.............. 42
4-2 MARA 生態毒性試驗分析結果 ......................... 45
4-2-1 參考毒物確認試驗................................ 45
4-2-2 影像讀取結果................................... 46
4-2-3 背景溶液干擾校正................................ 52
4-2-4 焚化灰渣之毒性結果.............................. 54
4-3 Microtox 生物毒性試驗分析結果..................... 58
4-3-1 酸鹼值對毒性之影響.............................. 58
4-3-2 測試時間對毒性之影響............................ 60
4-3-3 碳酸鹽礦化反應對毒性之影響....................... 63
4-3-4 焚化灰渣之毒性結果.............................. 64
4-4 Microtox 與MARA 之比較 ......................... 67
4-4-1 再現性與重複性................................. 67
4-4-2 敏感度........................................ 68
4-4-3 毒性結果分級................................... 70
4-4-4 環境意義...................................... 73
4-5 化學與生態毒理特性之關聯........................... 74
第五章 結論與建議.................................... 78
5-1 結論........................................... 78
5-2 建議........................................... 79
參考文獻 ........................................... 80
附錄一 ............................................. 87
參考文獻 1. Adamek, E., Baran, W., Sobczak., 2016. Photocatalytic degradation of veterinary antibiotics: Biodegradability and antimicrobial activity of intermediates. Process Safety and Environmental Protection, 103, 1-9.
2. Betton, C.I., 1994. Oils and Hydrocarbons. In Handbook of Ecotoxicology, pp. 244-263.
3. Bitton, G., Jung, K., Koopman, B., 1994. Evaluation of a microplate assay specific for heavy meal toxicity. Archives of Environmental Contamination and Toxicology, 27, 25-28.
4. Blaise, C., Forghani, R., Legault, R., Guzzo, J., Dubow, M.S., 1994. A bacterial toxicity assay performed with microplates, microluminometry and Microtox reagent. BioTechniques, 16, 932-937.
5. Blaise, C., Gagne, F., Ferard, J.F., Eullaffroy, P., 2008. Ecotoxicity of selected nano-materials to aquatic organisms. Environmental Toxicology, 23, 591-598.
6. Bronowska. M., Stęborowski. R., Bystrzejewska-Piotrowska. G., 2013. Estimation of the acute cesium toxicity by the microbial assay for risk assessment (MARA) test. Nukleonika, 58, 481-485.
7. Cappai, G., Cara, S., Muntoni, A., Piredda, M., 2012. Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration. Journal of Hazardous Materials, 207, 159-164.
8. Chou, J.-D., Wey, M.-Y., Liang, H.-H., Chang, S.-H., 2009. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators. Journal of Hazardous Materials, 168, 197-202.
9. Cook, S.V., Chu, A., Goodman, R.H., 2000. Influence of salinity on Vibrio fischeri and lux-modified Pseudomonas fluorescens toxicity bioassays. Environmental Toxicology and Chemistry, 19, 2474-2477.
10. DeLorenzo, M.E., Scott, G.I., Ross, P.E., 2001. Toxicity of pesticides to aquatic microorganisms: A review. Environmental Toxicology and Chemistry, 20(1), 84-98.
11. Deprez, K., Robbens, J., Nobels, I., Vanparys, C., Vanermen, G., Tirez, K., Michiels, L., Weltens, R., 2012. DISCRISET: A battery of tests for fast waste classification-Application of tests on waste extracts. Waste Management, 32, 2218-2228.
12. European Commission (EC), 2008.Waste Framework Directive, 2008/98/EC. Belgium: European Union.
13. Fai, P.B. and Grant, A., 2010. An assessment of the potential of the microbial assay for risk assessment (MARA) for ecotoxicological testing. Ecotoxicology, 19, 1626-1633.
14. Fai, P.B., Mbida, M., Demefack, J.M., Yamssi, C., 2015. Potential of the microbial assay for risk assessment (MARA) for assessing ecotoxicological effects of herbicides to non-target organisms. Ecotoxicology, 24, 1915-1922.
15. Feng, S., Wang, X., Wei, G., Peng, P., Yang, Y., Cao, Z., 2007. Leachates of municipal solid waste incineration bottom ash from Macao: Heavy metal concentrations and genotoxicity. Chemosphere, 67, 1133-1137.
16. Ferrari, B., Radetski, C.M., Veber, A.M., Ferard, J.F., 1999. Ecotoxicological assessment of solid wastes: a combined liquid- and solid-phase testing approach using a battery of bioassays and biomarkers. Environmental Toxicology and Chemistry, 18, 1195-1202.
17. Ferrari, B., Masfaraud, J.F., Maul, A., Ferard, J.F., 2006. Predicting uncertainty in the ecotoxicological assessment of solid waste leachates. Environmental Science & Technology, 40, 7012-7017.
18. Ford, T., Jay, J., Patel, A., Kile, M., Prommasith, P., Galloway, T., Sanger, R., Smith, K., and Depledge, M., 2005. Use of ecotoxicological tools to evaluate the health of New Bedford Harbor sediments: a microbial biomarker approach. Environmental Heath Perspective, 113, 186-191.
19. Fulladosa, E., Murat, J.C., Martinez, M., Villaescusa, I., 2005. Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria. Chemosphere, 60, 43-48.
20. Gabrielson, J., Hart, M., Jarelov, A., Kuhn, I., McKenzie, D., and Mollby, R., 2002. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. Journal of Microbiological Methods, 50, 63-73.
21. Gabrielson, J., Kuhn, I., Colque-Navarro, P., Hart, M., Iversen, A., McKenzie, D., and Mollby, R., 2003. Microplate-based microbial assay for risk assessment and (eco)toxic fingerprinting of chemicals. Analytica Chimica Acta, 485, 121-130.
22. Gabrielson, J., 2004. Assessing the toxic impact of chemicals using bacteria. Sweden: Karolinska Institutet, pp. 1-31.
23. Haobo, H., Xinghua, H., Shujing, Z., Dajie, Z., 2006. The cement solidificationof municipal solid waste incineration fly ash. Journal of Wuhan university of Technology, 21(4).
24. Ho, K.T., Kuhn. A., Pelletier, M.C., Hendricks, T.L., Helmstetter, A., 1999. pH dependent toxicity of five metals to three marine organisms. Environmental Toxicology, 14, 235-240.
25. Huang, C.-M., Yang, W.-F., Ma, H.-W., Song, Y.-R., 2006. The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Management, 26, 979-987.
26. Ibanez, R., Andres, A., Viguri, J.R., Ortiz, I., Irabien, J.A., 2000. Characterization and management of incinerator wastes. Journal of Hazardous Materials, A79, 215-227.
27. Inouye, S., 1994. NAD(P)H-flavin oxidoreductase from bioluminescent bacterium, Vibrio fischeri ATCC 7744, is a flavoprotein. FEBS Letters, 347, 163-8.
28. ISO (International Organization for Standardization), 2006. Soil quality – guidancefor the choice and evaluation of bioassays for ecotoxicological characterization of soil and soil material. ISO 17616.
29. Jiang, J., Chen, M., Zhang, Y., Xu, X., 2009. Pb stabilization in fresh fly ash from municipal solid waste incinerator using accelerated carbonation technology. Journal of Hazardous Materials 161, 1046-1051.
30. Kaiser, K.L.E., 1998. Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms. Environmental Health Perspectives, 106, 583-591.
31. Kaneko, H., 1996. Evaluation of municipal waste incinerator fly ash toxicity and the role of cadmium by two aquatic toxicity tests. Waste Management, 16, 555-559.
32. Karuppiah. M., Gupta, G., 1997. Toxicity of and metals in coal combustion ash leachate. Journal of Hazardous Materials, 56, 53-58.
33. Kjeldsen, K., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H., 2002. Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science Technology, 32(4), 297-336.
34. Lapa, N., Barbosa, R., Morais, J., Mendes, B., Mehu, J., Santos Oliveira, J.F., 2002. Ecotoxicological assessment of leachates from MSWI bottom ashes. Waste Management, 22, 583-593.
35. Lin, K.L. and Chen, B.Y., 2006. Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash. Journal of Hazardous Materials, A138, 9-15.
36. Malara, A. and Oleszczuk, P., 2013. Application of battery of biotests for the determination of leachate toxicity to bacteria and invertebrates from sewage sludge-amended soil. Environmental Science and Pollution Research, 20, 3435-3446.
37. Marchlewicz, A., Guzik, U., Hupert-Kocurek, K., Nowak, A., Wilczyńska, S., Wojcieszyńska, D., 2017. Toxicity and biodegradation of ibuprofen by Bacilus thuringiensis B1. Environmental Science and Pollution Research, 24, 7572-7584.
38. Margaret, W.T., Tommy, R.S., William, H., Gerald, R.L., 1995. A comparison of standard acute toxicity tests with rapid-screening toxicity tests. Environmental Toxicology and Chemistry, 14(5), 907-915.
39. Moser, T., Rombke, J., Donnevert, G., Becher, R., 2011. Evaluation of biological methods for a future methodological implementation of the hazard criterion H14 ‘ecotoxic’ in the European waste list (2000/532/EC). Waste Management & Research, 29(2), 180-187.
40. Nałecz-Jawecki, G., Wadhia, K., Adomas, B., Piotrowicz-Cieslak, A.I., Sawicki, J., 2010. Application of microbial assay for risk assessment biotest in evaluation of toxicity of human and veterinary antibiotics. Environmental Toxicology, 25, 487-494.
41. Nikunen. E., Leinonen, R., Kemiläinen, B., Kultamaa, A. 2000. Environmental properties of chemicals. Environment guide.
42. Ocampo-Duque, W., Sierra, J., Ferre-Huquet, N., Schuhmacher, M., Domingo, J.L., 2008. Estimating the environmental impact of micro-pollutants in the low Ebro River (Spain): an approach based on screening toxicity with Vibrio fischeri. Chemosphere, 72, 715-721.
43. Ore, S., Todorovic, J., Ecke, H., Grennberg, K., Lidelow, S., Lagerkvist, A., 2007. Toxicity of leachate from bottom ash in a road construction. Waste Management, 27, 1626-1637.
44. Pablos, M.V., Martini, F., Fernandez, C., Babin, M.M., Herraez, I., Miranda, J., Martinez, J., Carbonell, G., San-Segundo, L., Garcia-Hortiguela, P., Tarazona, J.V., 2011. Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity. Waste
Management, 31, 1841-1847.
45. Padrtova, R.P., Marsalek, B., Holoubek, I., 1998. Evaluation of alternative and standard toxicity assay for screening of environmental samples: selection of an optimal test battery. Chemosphere, 37(3), 495-507.
46. Pandard, P., Devillers, J., Charissou, A.M., Poulsen, V., Jourdain, M.J., Ferard, J.F., Grand, C., Bispo, A., 2006. Selecting a battery of bioassays for ecotoxicological characterization of wastes. Science of the Total Environment, 363, 114-125.
47. Parvez, S., Venkataraman, C., Mukherji, S., 2006. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment international, 32(2), 265-268.
48. Persoone, G., 1998. Development and first validation of a “stock–culture free” algal microbiotest: the algaltoxkit. In Microscale Testing in Aquatic Toxicology, pp. 311-323.
49. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L., Nałecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L., Kolar, B., 2003. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology, 18, 395-402.
50. Phoungthong, K., Xia, Y., Zhang, H., Shao, L., He, P., 2016. Leaching toxicity characteristics of municipal solid waste incineration bottom ash. Environmental Science and Engineering, 10(2), 399-411.
51. Pivato, A., Gaspari, L., 2006. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria. Waste Management, 26, 1148-1155.
52. Polettini, A. and Pomi, R., 2004. The leaching behavior of incinerator bottom ash as affected by accelerated ageing. Journal of Hazardous Materials, B113, 209-215.
53. Quilici, L., Praud-Tabaries, A., Tabaries, F., Siret, B., 2004. Integration of ecotoxicity index and carboxylic of MSW incineration bottom ashes. Ecotoxicology, 13, 503-509.
54. Rathnayake, I.V., Megharaj, M., Krishnamurti, G.S., Bolan, N.S., Naidu, R., 2013. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere, 90(3), 1195-1200.
55. Ribe, V., Nehrenheim, E., Odlare, M., 2014. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Waste Management, 34, 1871-1876.
56. Roig, N., Sierra, J., Nadal, M., Marti, E., Navalon-Madrigal, P., Schuhmacher, M., Domingo, J.L., 2012. Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. Science of the Total Environment, 425, 99-109.
57. Rombke, J., Moser, T., Moser, H., 2009. Ecotoxicological characterization of 12 incineration ashes using 6 laboratory tests. Waste Management, 29, 2475-2482.
58. Santos, M.A., Monteiro, R.T.R., Braise, C., Gagne, F., Bull, K., Ferard, J.F., 2009. Influence of sediment grain size on elutriate toxicity of inorganic nanomaterials. Water Quality Research Journal of Canada, 44, 201-210.
59. Sieroslawska, A., 2014. Evaluation of usefulness of Microbial Assay of Risk Assessment (MARA) in the cyanobacterial toxicity estimation. Environmental Monitoring and Assessment, 186, 4629-4636.
60. Stiernstrom, S., Hemstrom, K., Wik, O., Carlsson, G., Bengtsson, B.E., Breitholtz, M., 2011. An ecotoxicological approach for hazard identification of energy ash. Waste Management, 31, 342-352.
61. Stiernstrom, S., Enell, A., Wik, O., Hemstrom, K., Breitholtz, M., 2014. Influence of leaching conditions for ecotoxicological classification of ash. Waste Management, 34, 421-429.
62. Sukandar., Padmi, T., Tanaka, M., Aoyama, I., 2009. Chemical stabilization of medical waste fly ash using chelating agent and phosphates: Heavy metals and ecotoxicity evalution. Waste Management, 29, 2065-2070.
63. Sun, J., Fernandez Bertos, M., Simons, S.J.R., 2008. Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy and Environmental Science 1, 370-377.
64. Tsiridis, V., Samaras, P., Kungolos, A., Sakellaropoulos, G.P., 2006. Application of leaching tests for toxicity evaluation of coal fly ash. Environmental Toxicology, 21, 409-416.
65. Tsiridis, V., Petala, M., Samaras, P., Kungolos, A., Sakellaropoulos, G.P., 2012. Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests. Ecotoxicology and Environmental Safety, 84, 212-220.
66. Ukwattage, N.L., Ranjith, P.G., Yellishetty, M., Bui, H.H., Xu, T., 2015. A laboratory-scale study of aqueous mineral carbonation of coal fly ash for CO2 sequestration. Journal of Cleaner Production, 103, 665-674.
67. Van Gerven T., Geysen, D., Stoffels, L., Jaspers, M., Wauters, G., Vandecasteele, C. 2005. Management of incinerator residues in Flanders (Belgium) and in neighbouring countries. A comparison. Waste Management, 25, 75-87.
68. Villaescusa, I., Marti, S., Matas, C., Martines, M., Ribo, J.M., 1997. Chromium(VI) toxicity to luminescent bacteria. Environmental Toxicology and Chemistry, 16(5), 871-874.
69. Wadhia, K., Dando, T., and Thompson, K.C., 2007. Intra-laboratory evaluation of Microbial Assay for Risk Assessment (MARA) for potential application in the implementation of the Water Framework Directive (WFD). Journal of Environmental Monitoring, 9, 953-058.
70. Wadhia, K., Thompson K.C., 2007. Low-cost ecotoxicity testing of environmental samples using microbiotests for potential implementation of the Water Framework Directive. Trends in Analytical Chemistry, 26, 300-307.
71. Wadhia, K., 2008. ISTA13-international interlaboratory comparative evaluation of microbial assay for risk assessment (MARA). Environmental Toxicology, 23, 626-633.
72. Wadhia, K., 2013. Microbial assay for risk assessment (MARA). In Encyclopedia of Aquatic Ecotoxicology, pp. 699-708.
73. Wang, L., Jin, Y., Nie, Y., Li, R., 2010. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test. Resources, Conservation and Recycling, 54, 1428-1435.
74. Wiles, C.C., 1996. Municipal solid waste combustion ash:
state-of-the-knowledge. Journal of Hazardous Materials, 47, 325-344.
75. Yang, R., Liao, W.P., Wu, P.H., 2012. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. Journal of Environmental Management, 104, 67-76.
76. Youcai, Z., Lijie, S., Guojian, L., 2002. Chemical stabilization of MSW incinerator fly ashes. Journal of Hazardous Materials, 95, 47-63.
77. Yu, J., Sun, L., Xiang, J., Jin, L., Hu, S., Su, S., Qiu, J., 2013. Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Management & Research, 31(7), 663-673.
78. 邱舜稜,2002。「以Microtox 檢測方法評估實際廢水生物毒性之研究」。國立中央大學環境工程研究所碩士論文。
79. 林俊達,林琇蘋,陳炳義,張家嘉,許家惠,葉修如,陳瑞祥,2012。
「水產魚用疫苗檢驗法規收集及田間試驗研究」。家畜衛試所研報,第47 期,第99-104 頁。
80. 蕭毓撰,2018。「加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究」。國立中央大學環境工程研究所碩士論文。
指導教授 林居慶(Chu-Ching Lin) 審核日期 2018-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明