以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:28 、訪客IP:3.141.6.23
姓名 施雅婷(Ya-Ting Shih) 查詢紙本館藏 畢業系所 環境工程研究所 論文名稱 具特定官能基之改質土壤對污染物吸持作用之研究 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 摘要
自然界土壤通常無法對有機污染物及無機重金屬兼具高親和力,一般土壤帶負電且對金屬離子具有高親和力,對於有機污染物則礙於低有機質含量導致吸持性較不顯著。傳統土壤之改質劑雖可增加土壤有機質含量且提高對有機污染物之吸持能力,但是對金屬離子並不具親和力。因此本研究選用四種具特定官能基之改質劑,以陽離子交換法製備改質土壤,利用該改質劑之特殊構造,使得改質土壤達到最大層隙間隙並可同時吸持非離子有機污染物及無機重金屬,而影響改質劑與吸持之因子也一併納入探討。
由基本特性分析發現,改質後土壤有機碳含量為2.06〜53.10 %,遠高於未改質的鈉蒙特石(0.02 %)。從小角度X 光繞射分析之測量結果得知,經改質過後之土壤層隙間距最大為49.57 Å,明顯大於原土樣之12.78 Å。土壤改質後其比表面積減少、孔洞大小增加,由FTIR的光譜圖可證實土壤表面含有特定官能基,最後以元素分析儀再次驗證官能基存在於改質土壤,綜合各分析結果,證實改質劑已成功置換至土壤表面。
土壤以有機相分佈之方式吸持BTEX,而改質後土壤提供良好的分佈介質,由吸持結果可觀察出改質劑的結構與疏水性分佈環境會影響BTEX的吸持,且分佈常數(Kd)與有機碳含量有明顯的相關性存在,經校正後得log Kom值皆大於文獻值。本研究之改質土壤對於Cu+2及Pb+2的吸附量皆高於文獻值,可證明土壤經含有特定官能基之改質劑進行改質後,確實可以增加改質土壤對無機重金屬之吸附能力。
摘要(英) Abstract
Soil possesses negatively charged in nature and has a high affinity for cations. Soil is limit capacity of partitioning for nonionic organic pollutants, since the nonionic organic pollutants are carried out with sorption by the way of partition into soil organic contents. If the soil does not contain a high content of organic matters, the partition capacity of soil would be low. However, the inorganic and organic pollutants usually exist at the same time in the environment. The traditional methods of soil modification usually only improve the content of soil organic matter resuit in increasing partition capacity and decreasing capacity of adsorption for ionic pollutants.
In this study, we synthesized modified-montmorillonites using surfactants with different alkyl chain length and functional groups. Such modification makes Na-montmorillonites possible for simultaneous sorption of inorganic and organic pollutants. The X-ray diffraction (XRD) technique was applied to reveal intercalated materials in the layer, which provides informations on layered structure and the basal spacing. Experimental results showed that for the modified clay basal spacing was increased from 12.78 to ~ 49.57Å, and the inter-layer space was mainly dependent on the carbon chain length and dosage of the modifiers. Nitrogen adsorption-desorption isotherms confirmed that the amount of modifier resulted in increasing pore size than that of unmodified sample. Fourier transform infrared spectroscopy also indicated that the modified clay surface contains the respective functional groups and the intensity of corresponding peaks was relatively altered by the carbon chain length of the modifiers.
The experimental results show that the partitioning of BTEX in modified clay was disproportional to water solubility. In addition , the distribution and fates of BTEX in modified soils are affected by the environment and structure of the modifiers. The organic modifiers used in this study, indeed better enhanced the distribution of nonionic organic compounds. The adsorption experiments of Pb+2, and Cu+2 show that the adsorption capacity of Pb+2 is higher than that of Cu+2. This study suggests that soil organic modifiers is a viable technique in adsoption of cations.
關鍵字(中) ★ 改質土壤
★ 土壤層隙間距
★ BEXT
★ log Kom
★ 重金屬污染關鍵字(英) ★ modified clay
★ basal spacing
★ BTEX
★ partition coefficiet論文目次 目 錄
目次 頁次
目錄 …………………………………………………..……… I
圖目錄 ………………………………………………………..… IV
表目錄 ……………………………………………………..…… VIII
第一章 前言…………………….……...…………………….… 1
1-1 研究緣起……………………………………………..… 1
1-2 研究目的與內容……………………………………..… 3
第二章 文獻回顧…………………………………………….… 4
2-1 土壤基本性質………………………………………..… 4
2-1-1 土壤無機相…………………………………………..… 4
2-1-2 土壤有機質…………………………………………..… 5
2-1-3 土壤陽離子交換容量(CEC)………………………... 6
2-2 改質土壤之基質與方法…………………….....…….… 8
2-2-1 改質土壤基質……………………………….....…….… 8
2-2-2 以陽離子交換之改質方法………….………...……..… 9
2-3 土壤對污染物之吸持作用…………………………….. 10
2-3-1 土壤無機相吸附作用(adsorption)………...……..… 10
2-3-2 土壤有機相的兩相間分佈作用(partitioning)...…… 11
2-3-3 有機碳分佈常數( Koc )…………………...………….… 13
2-3-4 改質土壤對有機污染物之吸持作用………………….. 14
2-4 改質土壤對重金屬污染物之吸附作用……………….. 15
2-4-1 重金屬來源與危害..……..…………………………..… 15
2-4-2 去除重金屬之方法..……..…………………………..… 16
2-4-3 特定官能基對重金屬之吸附作用…………………..… 18
2-4-4 以吸附去除重金屬之研究…………………………..… 18
2-5 吸附理論………………………………………...……... 21
2-5-1 等溫吸附模式………………………………………..… 21
2-5-2 等溫吸附曲線…………………………….……….....… 23
2-5-3 遲滯現象……………………………………………..… 26
第三章 研究方法……………………………………………..… 28
3-1 研究內容與流程……………………………………..… 28
3-2 實驗設備與儀器……………………………………..… 30
3-2-1 實驗設備……………………………………………..… 30
3-2-2 實驗儀器……………………………………………….. 31
3-3 實驗材料……………………………………………….. 35
3-3-1 不含有機質土壤……………………………..………… 35
3-3-2 有機改質劑……………………………………..……… 35
3-3-3 非離子性有機污染物……………………………..…… 37
3-3-4 重金屬標準品……………………………………..…… 37
3-3-5 溶劑………………………………………………..…… 38
3-4 實驗方法…………………………………………..…… 39
3-4-1 改質土壤之製備……………………………………..… 39
3-4-2 改質土壤對重金屬之吸附實驗…………………..…… 41
3-4-3 改質土壤對NOCs 之吸持實驗………………….…… 42
第四章 結果與討論…….…………………………………….… 43
4-1 改質土壤之特性分析………………………………..… 43
4-1-1 穿透式電子顯微鏡 (TEM)…………………..……...… 43
4-1-2 小角度X光繞射分析 (XRD)………………….……… 49
4-1-3 比表面積、平均孔徑與孔徑分佈 (BET)…………..… 54
4-1-4 傅立葉轉換紅外線光譜儀 (FTIR)……………...…..… 59
4-1-5 有機碳含量分析 (TOC)………….………………….… 63
4-1-6 元素分析儀 (EA)……………………..……………..… 64
4-2 改質土壤對有機污染物之吸持作用……………….…. 68
4-2-1 不同改質土壤對BTEX吸持之影響……………….…. 68
4-2-2 不同吸附質之吸持行為……………….………………. 75
4-2-3 改質土壤特性對BTEX分佈常數之影響…………….. 78
4-3 改質土壤對重金屬之吸附作用……………………….. 84
4-3-1 不同改質土壤對重金屬吸附之影響………………….. 86
4-3-2 不同重金屬之吸附差異……………………………….. 93
4-3-3 改質土壤與其他吸附劑之比較……………………….. 96
第五章 結論與建議……………….……………………………. 98
5-1 結論…………………………………………………….. 98
5-2 建議…………………………………………………….. 99
參考文獻 ………………………………………………………..… 100
圖 目 錄
目次 頁次
圖2-1 土壤中陽離子交換示意圖……………………………….… 7
圖2-2 層狀矽酸鹽示意圖……………………………………….… 8
圖2-2 改質土壤提供有機化合物之分佈位置示意圖...……….…. 14
圖2-4 吸附等溫曲線示意圖…………………………...…..……… 24
圖2-5 IUPAC的四種遲滯曲線……………………………………. 26
圖2-6 不同孔洞形狀吸脫附行為示意圖…………………………. 27
圖3-1 研究架構圖…………………………………………………. 29
圖3-2 布拉格繞射………………………………..………………... 33
圖3-3 有機土壤製備流程圖………………………………………. 40
圖4-1 未改質Na-MMT之TEM影像圖………………………….. 44
圖4-2 改質土壤CS-1之TEM影像圖……………………………. 45
圖4-3 改質土壤CS-2之TEM影像圖……………………………. 46
圖4-4 改質土壤CM-1之TEM影像圖……………………………. 47
圖4-5 改質土壤CS-0.5之TEM影像圖………………….………. 48
圖4-6 改質土壤DM-1之TEM影像圖……………………………. 48
圖4-7 改質土壤CD-1之TEM影像圖……………………………. 48
圖4-8 改質土壤CC-1之TEM影像圖……………………………. 48
圖4-9 未改質Na-MMT之XRD圖譜……………………………... 50
圖4-10 改質土壤CS-0.5之XRD圖譜…………………………….. 50
圖4-11 改質土壤CS-1之XRD圖譜………………………………... 50
圖4-12 改質土壤CS-2之XRD圖譜………………………………... 51
圖4-13 改質土壤DM-1之XRD圖譜…………………………..…... 51
圖4-14 改質土壤CD-1之XRD圖譜………………………..….…... 51
圖4-15 改質土壤CM-1之XRD圖譜………....…….……….……... 52
圖4-16 改質土壤CC-1之XRD圖譜……………..………….……... 52
圖4-17 未改質Na-MMT之氮氣等溫吸/脫附曲線………...…...…. 55
圖4-18 改質土壤CS-0.5之氮氣等溫吸/脫附曲線………………... 55
圖4-19 改質土壤CS-1之氮氣等溫吸/脫附曲線…………………... 56
圖4-20 改質土壤CS-2之氮氣等溫吸/脫附曲線…………………... 56
圖4-21 改質土壤DM-1之氮氣等溫吸/脫附曲線……………..…... 56
圖4-22 改質土壤CD-1之氮氣等溫吸/脫附曲線……………...…... 57
圖4-23 改質土壤CM-1之氮氣等溫吸/脫附曲線…….……..……... 57
圖4-24 改質土壤CC-1之氮氣等溫吸/脫附曲線…………………... 57
圖4-25 未改質Na-MMT之紅外線光譜圖………..………………... 60
圖4-26 改質土壤CS-0.5之紅外線光譜圖………..………………... 60
圖4-27 改質土壤CS-1之紅外線光譜圖……..…..………………... 60
圖4-28 改質土壤CS-2之紅外線光譜圖……..…..………………... 61
圖4-29 改質土壤DM-1之紅外線光譜圖……..…..………………... 61
圖4-30 改質土壤CD-1之紅外線光譜圖……..…..………………... 61
圖4-31 改質土壤CM-1之紅外線光譜圖……..…..………………... 62
圖4-32 改質土壤CC-1之紅外線光譜圖……..…..………………... 62
圖4-33 改質土壤CS-0.5對BTEX之等溫吸附曲線……………… 69
圖4-34 改質土壤CS-1對BTEX之等溫吸附曲線………………… 69
圖4-35 改質土壤CS-2對BTEX之等溫吸附曲線………………… 70
圖4-36 改質土壤DM-1對BTEX之等溫吸附曲線……….……… 70
圖4-37 改質土壤CD-1對BTEX之等溫吸附曲線………………… 71
圖4-38 改質土壤CM-1對BTEX之等溫吸附曲線…………...…… 71
圖4-39 改質土壤CC-1對BTEX之等溫吸附曲線………………… 72
圖4-40 不同改質土壤對BTEX之等溫吸附線……………………. 73
圖4-41 改質土壤CS-0.5對BTEX之等溫吸附線………………… 76
圖4-42 改質土壤CS-1對BTEX之等溫吸附線………….………… 76
圖4-43 改質土壤CS-2對BTEX之等溫吸附線………….………… 76
圖4-44 改質土壤DM-1對BTEX之等溫吸附線………….……… 77
圖4-45 改質土壤CD-1對BTEX之等溫吸附線………….….…… 77
圖4-46 改質土壤CM-1對BTEX之等溫吸附線………….……… 77
圖4-47 改質土壤CC-1對BTEX之等溫吸附線………….….…… 78
圖4-48 銅在不同pH值下之形式………………………………….. 85
圖4-49 硝酸鉛與氫氧化鉛在不同pH值下所存在的形式………... 85
圖4-50 改質土壤CS-0.5對Cu+2之Freundlich等溫吸附線………... 86
圖4-51 改質土壤CS-0.5對Cu+2之Langmuir等溫吸附線………... 86
圖4-52 改質土壤CS-1對Cu+2之Freundlich等溫吸附線…...……... 87
圖4-53 改質土壤CS-1對Cu+2之Langmuir等溫吸附線……....…... 87
圖4-54 改質土壤CS-2對Cu+2之Freundlich等溫吸附線…...……... 87
圖4-55 改質土壤CS-2對Cu+2之Langmuir等溫吸附線……........... 87
圖4-56 改質土壤DM-1對Cu+2之Freundlich等溫吸附線…...…... 87
圖4-57 改質土壤DM-1對Cu+2之Langmuir等溫吸附線…….......... 87
圖4-58 改質土壤CD-1對Cu+2之Freundlich等溫吸附線…...…... 88
圖4-59 改質土壤CD-1對Cu+2之Langmuir等溫吸附線……...…... 88
圖4-60 改質土壤CM-1對Cu+2之Freundlich等溫吸附線…...…... 88
圖4-61 改質土壤CM-1對Cu+2之Langmuir等溫吸附線…….......... 88
圖4-62 改質土壤CC-1對Cu+2之Freundlich等溫吸附線…...…... 88
圖4-63 改質土壤CC-1對Cu+2之Langmuir等溫吸附線……...…... 88
圖4-64 改質土壤CS-0.5對Pb+2之Freundlich等溫吸附線………... 89
圖4-65 改質土壤CS-0.5對Pb+2之Langmuir等溫吸附線…..……... 89
圖4-66 改質土壤CS-1對Pb+2之Freundlich等溫吸附線…...……... 89
圖4-67 改質土壤CS-1對Pb+2之Langmuir等溫吸附線……....…... 89
圖4-68 改質土壤CS-2對Pb+2之Freundlich等溫吸附線…...……... 89
圖4-69 改質土壤CS-2對Pb+2之Langmuir等溫吸附線……............ 89
圖4-70 改質土壤DM-1對Pb+2之Freundlich等溫吸附線….....…... 90
圖4-71 改質土壤DM-1對Pb+2之Langmuir等溫吸附線…….......... 90
圖4-72 改質土壤CD-1對Pb+2之Freundlich等溫吸附線…...…...... 90
圖4-73 改質土壤CD-1對Pb+2之Langmuir等溫吸附線……...….... 90
圖4-74 改質土壤CM-1對Pb+2之Freundlich等溫吸附線…......…... 90
圖4-75 改質土壤CM-1對Pb+2之Langmuir等溫吸附線…….......... 90
圖4-76 改質土壤CC-1對Pb+2之Freundlich等溫吸附線……...…... 91
圖4-77 改質土壤CC-1對Pb+2之Langmuir等溫吸附線……...….... 91
圖4-78 改質土壤CS-0.5 對Cu+2與Pb+2之Freundlich等溫吸附線. 93
圖4-79 改質土壤CS-1 對Cu+2與Pb+2之Freundlich等溫吸附線.... 94
圖4-80 改質土壤CS-2 對Cu+2與Pb+2之Freundlich等溫吸附線.... 94
圖4-81 改質土壤DM-1 對Cu+2與Pb+2之Freundlich等溫吸附線... 94
圖4-82 改質土壤CD-1 對Cu+2與Pb+2之Freundlich等溫吸附線.... 95
圖4-83 改質土壤CM-1 對Cu+2與Pb+2之Freundlich等溫吸附線... 95
圖4-84 改質土壤CC-1 對Cu+2與Pb+2之Freundlich等溫吸附線.... 95
表 目 錄
目次 頁次
表2-1 土壤無機相三種主要粒徑之基本特性……………….…… 5
表2-2 腐植質三種主要部分之特性…….………………………… 6
表2-3 陽離子之離子結晶半徑(於25 ℃下)…………………….. 9
表2-4 物理吸附及化學吸附特性之比較………………………..... 11
表2-5 分佈作用與吸附作用之比較………………………………. 12
表2-6 全球排放重金屬趨勢 (1000 metric tonnes/year)………….. 15
表2-7 不同吸附劑吸附銅(Cu+2)之文獻整理……………………... 19
表2-8 不同吸附劑吸附鉛(Pb+2)之文獻整理……………………... 20
表3-1 火焰式原子吸收光譜儀操作條件…………………………. 32
表3-2 SWy-2 鈉蒙特石物理性質表……………………………… 35
表3-3 具特殊官能基之改質劑性質表……………………………. 36
表3-4 BETX基本性質表………………………………………….. 37
表3-5 重金屬標準品基本性質表…………………………………. 37
表3-6 使用溶劑之基本性質表……………………………………. 38
表3-7 實驗代號一覽表……………………………………………. 41
表4-1 X光繞射儀分析結果……………………………………….. 49
表4-2 改質土壤比表面積與平均孔徑性質表……………………. 58
表4-3 改質土壤的有機碳含量……………………………………. 63
表4-4 改質土壤元素分析儀之結果………………………………. 65
表4-5 改質土壤之官能基含量……………………………………. 67
表4-6 BTEX 於改質土壤之分佈常數彙整表……………………. 74
表4-7 BTEX 於改質土壤之分佈常數彙整表(Koc)….……............ 79
表4-8 BTEX 於改質土壤之分佈常數彙整表(Kom)………............ 79
表4-9 BTEX 於改質土壤之log Koc………………………………. 81
表4-10 BTEX 於改質土壤之log Kom………………………………. 81
表4-11 改質土壤之log Kom與文獻之比較…………………………. 82
表4-12 改質土壤之Langmuir isotherm 吸附參數表……………… 91
表4-13 改質土壤之飽和吸附量與文獻之比較……………………. 96
參考文獻 參考文獻
1. Kojima,Y.; Usuki,A.; Kawasumi,M.; Fukushima,Y.; Okada,A.; Kurauchi,T.,“Synthesis of nylon-6-clay hybrid”, J Mater Res, 8, pp. 1179–1184, (1993)
2. Boyd,S.A.; Lee,J.F.; Mortland,M.“Attenuating Organic Contaminant Mobility by Soil Modification” Nature, 333, 345-347, (1988)
3. 張仁福,“土壤污染防治學”,高雄復文,初版,(1998)
4. Braja,B.M.原著,胡德欽譯,“土壤力學”,高立,初版,(1997)
5. Ray R.W.; Nyle ,C.B.,“The Nature and Properties of Soils”, 4th Ed, Pearson Prentice Hall, (2007)
6. 王一雄,“土壤環境污染與農藥”,文海環境科學,初版,(1999)
7. Felbeck,G.T.,“Structural Chemistry of Soil Humic Substances.”, Adv. Agron., 327-368, (1965)
8. McBride,M.B.,“Environmental Chemistry of Soils”, Oxford University Press, Inc., (1994)
9. 莊雅婷,“具特殊官能基之土壤對水溶液中有機與無機污染物吸持行為之研究”,碩士論文,國立中央大學環境工程研究所,(2011)
10. 洪崑煌譯,“土壤化學”,國立編譯館,初版,(1996)
11. 潘國樑,“工程地質通論”,五南圖書出版有限公司,再版,(2013)
12. Liu,C.H.; Wang,S.L.; Wang,M.K.; Chuang,Y.H.; Chiang,P.N.“The Influence of Layer Charge Distribution of 2 : 1 Clay Mineral on Ammonium Fixation”,Soil and Environ., December, Vol. 12, No. 1 & No. 2, p 41-p 55, (2009)
13. Donald L.Sparks著,王明光譯,“環境土壤化學,五南,初版,(2000)
14. 黃怡禎,“礦物學”,地球科學文教基金會,520-535,(2000)
15. Mane,M.,“Activated carbon adsorption fundamentals, “Wiley, New York,p. 26-68, (1998)
16. Lambert,S.M.,“Functional Relationship Between Sorption in Soil and Chemical Structure”, J. Agric. Food Chem., 15, 572-576, (1989)
17. Lambert,S.M.; Porter,P.E.; Schieferstein,R.,“Movement and Sorption of Chemicals Applied to the Soil”, Weed, 13, 185-190, (1965)
18. Chiou,C.T.; Louis,J.P.,“A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”,Science,206, 831-832, (1979)
19. 林芳伃,“多重功能改質黏土之吸持與催化特性研究”,碩士論文,國立中央大學環境工程研究所,(2012)
20. Chiou,C.T., “Partition and Adsorption of Organic Contaminants in Environmental Systems”, Hoboken, N.J. : Wiley-Interscience, (2002)
21. Chiou,C.T.; Porter,P.E.; Schmedding,D.W.,“Partition Equilibria of Nonionic Organic Compounds between Soil Organic Matter and Water”, Environ. Sci. Technol., 17, 227-231, (1983)
22. Means,J.C.; Wood,S.G.; Hassett,J.J.,“Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils”, Environ. Sci. Technol., 14, 1524-1528, (1980)
23. Grathwohl,P., “Influence of Organic Matter from Soils and Sediments from Various Organicon the Sorption of Some Chlorinated Aliphatic Hydrocarbons : Implications on Koc Correlations”, Environ. Sci. Technol, 24, 1687-1693, (1990)
24. Murphy,E.M.; Zachara,J.M.; Smith,S.C., “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds”, Environ. Sci. Technol., 24, 1507-1516, (1990)
25. Xing,B.; McGil,B.; Dudas,M.J., “Sorption of α-Naphthol onto Organic Sorbents Varying in Polarity and Aromaticity”, Chemosphere, 28, 145-153, (1994)
26. Lee,J.F.; Crum,J.R.; Boyd,S.A.,“Enhanced Retention of Organic Contaminants by Soil Exchanged with Organic Cations” Environ. Sci. Technol, 23, 1365-1372, (1989)
27. Mohan,D.; Pittman,C.U.“Activated Carbons and Low Cost Adsorbents for Remediation of Tri- and Hexavalent Chromium from Water.” J. Hazard. Mater., 137, (2), 762-811, (2006).
28. 李中光,“重金屬廢水處理技術之進展” ,萬能科技大學,桃園市大學校院產業環保技術服務團,環保簡訊,第23期,(2014)
29. Potgieter,J.H.; Potgieter-Vermaak,S.S.; Kalibantonga,P.D.,” Heavy Metals Removal from Solution by Palygorskite clay.”, Minerals Engineering, 19, 463-470, (2006)
30. Abollion,O.; Aceto,M.; Malandrino,M.; Sarzanini,C.; Mentasti,E., “Adsorption of Heavy Metals on Na-montmorillonite. Effect of pH and Organic Substances.”, Water Research, 37, 1619-1627, (2003)
31. Malandrino,M.; Abollino,O.; Giacomino,A.,“Adsorption of heavy metals on vermiculite: Influence of pH and organic ligands ”,Journal of Colloid and Interface Science 299 ,537–546 , (2006)
32. Hamid, G.; Ahmad, M.; Meisam,T.; Parisa Z. , “Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite” Journal of Hazardous Materials 177 950–955, (2010)
33. Quek,S.Y.; Wase, D.A.J.; Forster, C.F. “The use of sago waste forthe sorption of lead and copper. ” , Water SA 24, 251–256. , (1998)
34. Panday,K.K.; Prasad,G. ; Singh,V.N.,“Copper(II) removal from aqueous solutions by fly ash” Original Research Article Water Research, Volume 19, Issue 7, Pages 869-873, (1985)
35. Townsley,C.C.,“Copper uptake in Aspergillus niger during batch growth and in non-growing mycelial suspensions. ”,Experimental Mycology 10, 281–288, (1986)
36. Padilha,F.P.; Franca, F.P.,“The use of wastebiomass of Sargassum sp. for the biosorption of copper from simulatedsemiconductor effluents.”,Bioresource Technology 96, 1511–1517 , (2005)
37. Keskinkan,O.; Goksu,M.Z.L.,“Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum) ”, Bioresource Technology 92, 197–200, (2004)
38. Hamid,G.; Ahmad,M.; Meisam,T.; Parisa Z. “Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite.”, Desalination 261, 73–79, (2010)
39. Sayed,A.D.; Nady,A.F.; Mohammed,A.W.; Adli,A.H.; Adel,I.M., “Equilibrium, kinetic and thermodynamic studies of Pb(II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin.”, Journal of Environmental Chemical Engineering 4,1674–1684, (2016)
40. Edidiong,A.; Alastair,M.; Petrus,N.; Flor,S., “Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies.”, Journal of Environmental Chemical Engineering 5, 679–698, (2017)
41. Yan,G.,“Heavy-metal removal from aqueous solution by fungus Mucor rouxii”,Water Research 37, 4486–4496, (2003)
42. Ruthven,D.M.,“Principles of Adsorption and Adsorption Process”, John Wiley & Sons, (1984)
43. Brunauer,S.; Deming,L.S.; Deming,W.E.; Teller, E., “On a Theory of the van der Waals Adsorption of Gases”, J. Am. Chem. Soc., 62, 1723-1732, (1940)
44. 黃慧貞,“土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究”,博士論文,國立中央大學環境工程研究所,(2006)
45. IUPAC Manual of Symbolsand Terminology ,Appendix 2 ,Pt. 1,Colloid and Surface Chemistry, Pure Appl. Chem. 31, 578, (1972)
46. 楊逸禎,“土壤無機相對有機污染物吸附特性之研究”,碩士論文,國立中央大學環境工程研究所,(2007)
47. Lagaly,G.,“Interaction of alkylamines with different types of layered compounds”, Solid State Ionics, 22(1), 43-51, (1986)
48. He, H.; Ma, Y. , “Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration”, Applied Clay Science, 48 (1–2), 67-72, (2010)
49. He,H.P.; Ray,F.L. , “Infrared study of HDTMA+ intercalated montmorillonite”, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 60, (12): 2853-2859, (2004)
50. Xua,F.; Lianga,X.; Lina,B.; Schrammb,K.W.; Kettrupb,A., “Estimation of soil organic partition coefficients: from retention factors measured by soil column chromatography with water as eluent” ,Journal of Chromatography A, 968, 7–16, (2002)
51. Lee, J.F.; Hsu,M.H.; Chao,H.P., “The effect of surfactants on the distribution of organic compounds in the soil solid/water system”, Journal of Hazardous Materials,114,123–130, (2004)
52. Lee, J.F.; Chang Y. T. , Chao H. P., Hsu M. H., “Organic compound distribution between nonionic surfactant solution and natural solids: Applicability of a solution property parameter”, Journal of Hazardous Materials, 129(1–3), p. 282-289, (2006)
53. 陳誼庭,“雙重功能層柱改質黏土之製備與吸持特性之研究”,碩士論文,國立中央大學環境工程研究所,(2015)
54. Wang, X.S.; Qin,Y., “Equilibrium sorption isotherms for of Cu2+on rice bran”, Process Biochemistry, 40, pp.677-680, (2005)
55. Gulnaziya Issabayeva; Mohamed Kheireddine Aroua , “Removal of lead from aqueous solutions on palm shell activated carbon”, Bioresource Technology, 97, pp.2350-2355 , (2006)
56. C. Faur-Brasquet; K. Kadirvelu; P. Le Cloirec, “emoval of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter”, Carbon 40 ,2387–2392, (2002)
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2018-1-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare