參考文獻 |
Abe, S. I., Kambayashi, F., & Okada, M., 1996. Ash melting treatment by rotating type surface melting furnace. Waste Management, 16(5), 431-443.
Al-Majidi, M. H., Lampropoulos, A., Cundy, A., & Meikle, S., 2016. Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials, 120, 198-211.
Amec forster wheeler . [online] Available at: https://www.amecfw.com/
Bakharev, T., 2005. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224-1232.
Bakharev, T., 2005. Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658-670.
Bayuseno, A., Schmahl, W. W., & Müllejans, T., 2009. Hydrothermal processing of MSWI Fly Ash-towards new stable minerals and fixation of heavy metals. Journal of Hazardous Materials, 167(1), 250-259.
Belitskus, D., 1970. Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. Journal of the Electrochemical Society, 117(8), 1097-1099.
Bertos, M. F., Simons, S., Hills, C., & Carey, P., 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO 2. Journal of Hazardous Materials, 112(3), 193-205.
Bournonville, B., A. Nzihou, P. Sharrock, and G. Depelsenaire, 2004. Stabilisation of Heavy Metal Containing Dusts by Reaction with Phosphoric Acid: Study of the Reactivity of Fly Ash, Journal of Hazardous Materials, Vol. 116, No. 1–2, 65–74.
Chang, M.B., & Chung, Y.T., 1998. Dioxin contents in fly ashes of MSW incineration in Taiwan. Chemosphere, 36(9), 1959-1968.
Chang, M.B., Huang, T.F., 2000. The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash. Chemosphere 40, 159-164.
Cheng, T.W., 2003. Fire resistant geopolymer produced by waste serpentine cutting. Paper presented at the Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology, Taiwan.
Cheng, T. W., Ueng, T. H., Chen, Y. S., & Chiu, J. P., 2002. Production of glass-ceramic from incinerator fly ash. Ceramics International, 28(7), 779-783.
Chimenos, J., Fernandez, A., Miralles, L., Segarra, M., & Espiell, F., 2003. Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management, 23(10), 887-895.
Chithiraputhiran, S. R., 2012. Kinetics of Alkaline Activation of Slag and Fly ash-Slag Systems: Arizona State University.
Chang, M. B., Huang, H. C., Tsai, S. S., Chi, K. H., & Chang-Chien, G. P., 2006. Evaluation of the emission characteristics of PCDD/Fs from electric arc furnaces. Chemosphere, 62(11), 1761-1773.
Chen, T., Yan, J. H., Lu, S. Y., Li, X. D., Gu, Y. L., Dai, H. F., Cen, K. F., 2008. Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in china. Journal of Hazardous Materials, 150(3), 510-514.
Chi, K. H., Chang, M. B., Chang-Chien, G. P., & Lin, C., 2005. Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan. Science of The Total Environment, 347(1), 148-162.
Chiang, K.Y., Hu, Y.H., 2010. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Management, 30(5), 831-838.
Davidovits, J., 2008. Geopolymer chemistry and applications: Geopolymer Institute.
Davidovits, J., 2013. Geopolymer Cement, a review. Paper presented at the Institut Geopolymere, France.
Davidovits, J., 1991.Geopolymers – inorganic polymeric new material. Journal of thermal analysis, 37(8), 1633-1656.
Dickson, L., Lenoir, D., Hutzinger, O., Naikwadi, K., & Karasek, F., 1989. Inhibition of chlorinated dibenzo-p-dioxin formation on municipal incinerator fly ash by using catalyst inhibitors. Chemosphere, 19(8-9), 1435-1445.
Du, Y.J., Wei, M.L., Reddy, K. R., Liu, Z.-P., & Jin, F., 2014. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. Journal of Hazardous Materials, 271, 131-140.
Environment Australia , 1999. Incineration and Dioxins: Review of Formation Processes, consultancy report prepared by Environmental and Safety Services for Environment Australia, Commonwealth Department of the Environment and Heritage, Canberra.
Galiano, Y. L., Pereira, C. F., & Vale, J., 2011. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. Journal of Hazardous Materials, 185(1), 373-381.
García-Mejía, T. A., & de Lourdes Chávez-García, M., 2016. Compressive Strength of Metakaolin-Based Geopolymers: Influence of KOH Concentration, Temperature, Time and Relative Humidity. Materials Sciences and Applications, 7(11), 772.
Görhan, G. and G. Kürklü, 2014.The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering ,58, 371-377.
Hajimohammadi, A., Ngo, T., Mendis, P., & Sanjayan, J., 2017. Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Materials & Design, 120, 255-265.
Hardjito, D., & Rangan, B. V., 2005. Development and properties of low-calcium fly ash-based geopolymer concrete.
Hardjito, D., Wallah, S., Sumajouw, D., & Rangan, B., 2005. Introducing fly ash-based geopolymer concrete: manufacture and engineering properties. Paper presented at the 30th Conference on our World in Concrete and Structures.
Ho, H. C., Chow, J. D., & Gau, S. H., 2008. Thermal mobility of heavy metals in municipal solid waste incinerator fly ash (MSWIFA). Environmental Engineering Science, 25(5), 649-656.
Hwang, C.L., & Huynh, T.P., 2015. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, 101, Part 1, 1-9.
Huang, S.C., Chang, F.C., Lo, S.L., Lee, M.Y., Wang, C.F., & Lin, J.D., 2007. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials, 144(1), 52-58.
Huang, T., D. Li, L. Kexiang and Y. Zhang. 2015. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier. Scientific Reports, 5.
KALKI’D. [online] Available at: https://store.25togo.com/collections/kalkid
Kalogirou, E., Themelis, N., Samaras, P., Karagiannidis, A., & Kontogianni, S., 2010. Fly ash characteristics from waste-to-energy facilities and processes for ash stabilization. Paper presented at the ISWA World Congress.
Lam, C. H., Ip, A. W., Barford, J. P., & McKay, G., 2010. Use of incineration MSW ash: a review. Sustainability, 2(7), 1943-1968.
Lancellotti, I., Kamseu, E., Michelazzi, M., Barbieri, L., Corradi, A., & Leonelli, C., 2010. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Management, 30(4), 673-679.
Lange, L., Hills, C., & Poole, A., 1996. The influence of mix parameters and binder choice on the carbonation of cement solidified wastes. Waste Management, 16(8), 749-756.
Lancellotti, I., M. Catauro, C. Ponzoni, F. Bollino and C. Leonelli, 2013. Inorganic polymers from alkali activation of metakaolin: Effect of setting and curing on structure. Journal of Solid State Chemistry, 200, 341-348.
Lee, S., van Riessen, A., Chon, C. M., Kang, N. H., Jou, H. T., & Kim, Y. J., 2016. Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. J Hazard Mater, 305, 59-66.
Lima, S. P. B. d., Vasconcelos, R. P. d., Paiva, O. A., Cordeiro, G. C., Chaves, M. R. d. M., Toledo Filho, R. D., & Fairbairn, E. d. M. R., 2011. Production of silica gel from residual rice husk ash. Química Nova, 34(1), 71-75.
Lin, K., Wang, K., Tzeng, B., & Lin, C., 2003. The reuse of municipal solid waste incinerator fly ash slag as a cement substitute. Resources, Conservation and Recycling, 39(4), 315-324.
Lin, K. L., 2006. Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. Journal of Hazardous Materials, 137(3), 1810-1816.
Lin, K.L., Shiu, H.-S., Shie, J.-L., Cheng, T.-W., & Hwang, C.-L., 2012. Effect of composition on characteristics of thin film transistor liquid crystal display (TFT-LCD) waste glass-metakaolin-based geopolymers. Construction and Building Materials, 36, 501-507.
Lin, K. L., Shiu, H. S., Hwang, C. L., Cheng, A., & Cheng, T. W., 2014. Effects of SiO2/Na2O molar ratio on properties of TFT-LCD waste glass-metakaolin-based geopolymers. Environmental Progress and Sustainable Energy, 33(1), 205-212.
Liu, J., Fang, Y., & Kayali, O., 2016. Study on the Disposition of Water in Fly Ash-Based Geopolymers Using ATR–IR.
Liu, H., Lu, H., Chen, D., Wang, H., Xu, H., & Zhang, R., 2009. Preparation and properties of glass–ceramics derived from blast-furnace slag by a ceramic-sintering process. Ceramics International, 35(8), 3181-3184.
Lundin, L., Marklund, S., 2008. Distribution of mono to octa-chlorinated PCDD/Fs in fly ash from a municipal solid-waste incinerator. Environmental Science & Technology 42, 1245-1250.
Luukkonen, T., M. Sarkkinen, K. Kemppainen, J. Rämö and U. Lassi, 2016. Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate. Applied Clay Science, 119, 266-276.
Ma, W., Brown, P. W., & Komarneni, S., 1998. Characterization and cation exchange properties of zeolite synthesized from fly ashes. Journal of materials research, 13(1), 3-7.
Mangialardi, T., 2001. Sintering of MSW fly ash for reuse as a concrete aggregate. Journal of Hazardous Materials, 87(1), 225-239.
Mangialardi, T., 2003. Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials, 98(1-3), 225-240.
Milliken Infrastructure Solutions, LLC. [online] Available at: http://geopolymers.milliken.com/Pages/home.aspx, June, 2017.
Moon, M. H., Kang, D., Lim, H., Oh, J.-E., & Chang, Y.-S., 2002. Continuous fractionation of fly ash particles by SPLITT for the investigation of PCDD/Fs levels in different sizes of insoluble particles. Environmental science & technology, 36(20), 4416-4423.
Palomo, A., Grutzeck, M. W., & Blanco, M. T., 1999. Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323-1329.
Pan, J. R., Huang, C., Kuo, J. J., & Lin, S. H., 2008. Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Management, 28(7), 1113-1118.
Panias, D., Giannopoulou, I. P., & Perraki, T., 2007. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1–3), 246-254.
Phair, J. W., & Van Deventer, J. S. J., 2001. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Minerals Engineering, 14(3), 289-304.
Qian, G., Cao, Y., Chui, P., & Tay, J., 2006. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Journal of Hazardous Materials, 129(1–3), 274-281.
Ross, B. J., Lacombe, D., Naikwadi, K. P., & Karasek, F. W., 1990. Investigation of the effect of water, acids, and bases in the gas stream in the catalytic formation of PCDD and PCDF over MSW fly ash. Chemosphere, 20(10), 1967-1972.
Rovnaník, P., 2010. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176-1183.
Sakai, S.I., & Hiraoka, M., 2000. Municipal solid waste incinerator residue recycling by thermal processes. Waste Management, 20(2), 249-258.
Shiu, H. S., Lin, K. L., Chao, S. J., Hwang, C. L., & Cheng, T. W.,2014. Effects of foam agent on characteristics of thin‐film transistor liquid crystal display waste glass‐metakaolin‐based cellular geopolymer. Environmental Progress & Sustainable Energy, 33(2), 538-550.
Shin, K.-J., & Chang, Y.-S., 1999. Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals in fly ash produced from korean municipal solid waste incinerators. Chemosphere, 38(11), 2655-2666.
Škvára, F., Kopecký, L., Myšková, L., Šmilauer, V., Alberovska, L., & Vinšová, L., 2009. Aluminosilicate polymers–influence of elevated temperatures, efflorescence. Ceramics–Silikáty, 53(4), 276-282.
Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P., 2011. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90(6), 2118-2124.
Spence, R. D., & Shi, C., 2004. Stabilization and solidification of hazardous, radioactive, and mixed wastes: CRC press.
Sukandar, S., Yasuda, K., Tanaka, M., & Aoyama, I., 2006. Metals leachability from medical waste incinerator fly ash: a case study on particle size comparison. Environmental Pollution, 144(3), 726-735.
Swanepoel, J. C., & Strydom, C. A., 2002. Utilisation of fly ash in a geopolymeric material. Applied Geochemistry, 17(8), 1143-1148.
Tchobanoglous, G., Theisen, H., & Vigil, S., 1993. Integrated solid waste management: engineering principles and management issues: McGraw-Hill Science/Engineering/Math.
Universal enterprise. [online] Available at: https://www.indiamart.com/universal-entp/
US EPA, 1998. The Inventory of Sources of Dioxin in the United States. EPA/600/P-98/002Aa
Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Haws, L., 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological sciences, 93(2), 223-241.
Wagners. [online] Available at: http://www.wagner.com.au/, June, 2017.
Wang, K.S., Chiang, K.Y., Lin, K.L., & Sun, C.J., 2001. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash. Hydrometallurgy, 62(2), 73-81.
Wang, K.S., Lin, K.L., & Huang, Z.Q., 2001. Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement. Cement and Concrete Research, 31(1), 97-103.
Wang, K.S., Lin, K.L., & Lee, C.H., 2009. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction. Journal of Hazardous Materials, 162(1), 338-343.
Yao, Z., Tamura, C., Matsuda, M., & Miyake, M., 1999. Resource recovery of waste incineration fly ash: Synthesis of tobermorite as ion exchanger. Journal of materials research, 14(11), 4437-4442.
Yao, X., Yang, T., & Zhang, Z., 2016. Fly ash-based geopolymers: Effect of slag addition on efflorescence. Journal of Wuhan University of Technology. Materials Science Edition, 31(3), 689.
Ye, N., Chen, Y., Yang, J., Liang, S., Hu, Y., Xiao, B., Wu, X., 2016. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. Journal of Hazardous Materials, 318, 70-78.
Yunsheng, Z., Wei, S., & Zongjin, L., 2010. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47(3-4), 271-275.
Zeng, S., & Wang, J., 2016. Characterization of mechanical and electric properties of geopolymers synthesized using four locally available fly ashes. Construction and Building Materials, 121, 386-399.
Zhang, Z., Provis, J. L., Reid, A., & Wang, H., 2014. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64, 30-41.
Zheng, L., Wang, C., Wang, W., Shi, Y., & Gao, X., 2011. Immobilization of MSWI fly ash through geopolymerization: Effects of water-wash. Waste Management, 31(2), 311-317.
Zheng, L., Wang, W., & Gao, X., 2016. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: Based on partial charge model analysis. Waste Management, 58, 270-279.
王志豪,鄭大偉,楊立昌,2015。無機聚合綠色水泥及混凝土之收縮性質及耐久特性之研究,第二十七屆廢棄物處理技術研討會。
江康鈺,王鯤生,1999,廢棄物焚化過程重金屬分佈及排放之特性,工業污染防治季刊,第七十期。
江勝偉,簡光勵,胡哲誠,廖啟宏,林國明,鍾人傑,2014。以無機吸附法處理低放射性廢水核種之研究,103年環保技術與工程實務研討會。
行政院環境保護署,2016。行政院環境保護署環境保護統計年報 105年。
行政院環境保護署,2016。營運中公有掩埋場掩埋場容量統計表,環境資料開放平台。
李明霖,鄭大偉,翁祖炘,柯明賢,2007。無機聚合物吸附重金屬之特性,第十九屆廢棄物處理技術研討會。
周綵蓉、江康鈺、陳雅馨、呂承翰、李怡華,2016。廢棄保溫材料製備為無機聚合材料之特性評估研究,105年產業溫室氣體減量成果發表暨綠色技術與工程實務研討會。
林宜臻,2013,焚化飛灰固化最佳條件之研究-實廠案例探討,碩士論文,國立臺北科技大學環境工程與管理研究所。
林瑋倫,2009。檢激發盧時機膠體工程性質之研究,碩士論文,國立台灣科技大學營建工程系。
林以潔,陳志成,江金龍,2016。焚化飛灰鹼熔水熱合成沸石之最佳操作條件研究,第二十八屆廢棄物處理技術研討會。
林凱隆,許皓翔,鄭大偉,黃兆龍,2011。TFT-LCD廢玻璃以不同SiO2/Na2O 比製備無機聚合物之研究,第二十三屆廢棄物處理技術研討會。
林岳凱,呂東璇,張祖恩,2016。鹼活化轉爐石細粉料產製工程材料之研究,第二十八屆廢棄物處理技術研討會。
林瑋倫,2009。檢激發盧時機膠體工程性質之研究,碩士論文,國立台灣科技大學營建工程系。
柯明賢,簡呈至,陳盈良,賴怡潔,2016。焚化飛灰穩定化物再利用混凝土磚之重金屬長期穩定性,第二十八屆廢棄物處理技術研討會。
柯翰勝,鄭大偉,2011。無機聚合技術應用於綠色水泥之開發研究,2011年清潔生產暨環保技術研討會。
孫常榮,2001,都市垃圾焚化飛灰水溶性與矽質成分在燒結熱處理過程對重金屬行為之影響,碩士論文,國立中央大學環境工程研究所。
高思懷,1997,垃圾焚化灰渣利用之研發建制及推廣計畫 (第二年),行政院環保署廢管處。
陳昭羽,2011。加速碳酸鹽化反應對垃圾焚化灰渣重金屬溶出特性影響之研究,碩士論文,私立逢甲大學環境工程與科學學系。
陳元昊,2002。萃取前處理焚化飛灰作為卜作嵐攙和料之研究,碩士論文, 國立成功大學環境工程研究所。
張坤森,蘇薏茹,邱孔濱,徐誠隆,楊之葶,2016。利於垃圾焚化飛灰再用之精進無害處理研究,第二十八屆廢棄物處理技術研討會。
張坤森,韓雄文,陳麗萍,鍾政宏,柯韋丞,2012。垃圾焚化飛灰無害化及再利用製成紅磚之研究,第二十三屆廢棄物處理技術研討會。
張坤森,韓雄文,劉美芬,楊雅婷,王姿婷,譚振偉,2012。無害飛灰再利用製備瓷磚之特性分析及其可行性探討,第二十三屆廢棄物處理技術研討會。
張坤森,鍾日熙,陳麗萍,黃晨豪,柯韋丞,林衢宏,2013。垃圾焚化飛灰重金屬無害化處理技術之研發,第二十五屆廢棄物處理技術研討會。
張格誌,鄭大偉,2015。焚化飛灰資源及製成無機聚合綠色水泥之研究,第二十七屆廢棄物處理技術研討會。
曾德意,2008。台灣地區垃圾焚化廠灰渣戴奧辛含量特徵之研究,碩士論文,國立臺北科技大學環境工程與管理研究所。
黃立遠,張大鵬,陳柏存,施正元,2009。以實驗設計法探討鹼性溶液組成對於飛灰基無機聚合物力學性質之影響,中國土木水利工程學刊,第21卷,第3期,339-349。
楊朝欽,2011。飛灰熱熔之研究: 金屬分布與包匣特徵,碩士論文,屏東科技大學環境工程與科學系所, 1-109。
詹炯淵,2001,垃圾焚化飛灰管理對策之研究,國立台灣大學環境工程學研究所碩士論文。
廖文彬,楊仁泊,郭韋廷,黃瑞淵,2013。垃圾焚化飛灰重金屬無害化處理技術之研發,第二十四屆廢棄物處理技術研討會。
鄭大偉,2010,無機聚合技術的發展應用及回顧,礦冶,54卷,第1期,2010,第140頁-第157頁。
潘述元,蔣本基,張怡怡, 陳奕宏,2014,應用超重力旋轉填充床進行二氧化碳捕獲與爐渣安定化之績效評估,鑛冶: 中國鑛冶工程學會會刊,(227),56-62。
鍾清汶,鄭大偉,2014。無機聚合技術固化/穩定化焚化飛灰之研究,103年環保技術與工程實務研討會。
戴于盛,鄭大偉,柯明賢,2012。無機聚合綠色水泥應用於固化焚化飛灰之研究,第二十三屆廢棄物處理技術研討會。
簡呈至,柯明賢,2012。焚化飛灰穩定化物再利用作為混凝土磚可行性之探討,第二十三屆廢棄物處理技術研討會。
|