參考文獻 |
1. Organization, W.H., WHO global report on trends in prevalence of tobacco smoking 2015. 2015: World Health Organization.
2. Jha, P., Avoidable Deaths from Smoking: A Global Perspective. Public Health Reviews (2107-6952), 2011. 33(2).
3. Mendis, S., P. Puska, and B. Norrving, Global atlas on cardiovascular disease prevention and control. 2011: World Health Organization.
4. Anderson, P.J., J.D. Wilson, and F.C. Hiller, Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest, 1990. 97(5): p. 1115-1120.
5. Rodgman, A. and T.A. Perfetti, The chemical components of tobacco and tobacco smoke. 2013: CRC press.
6. Baker, R.R., Smoke generation inside a burning cigarette: modifying combustion to develop cigarettes that may be less hazardous to health. Progress in Energy and Combustion Science, 2006. 32(4): p. 373-385.
7. Löndahl, J., et al., Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhalation Toxicology, 2007. 19(2): p. 109-116.
8. Daigle, C.C., et al., Ultrafine particle deposition in humans during rest and exercise. Inhalation toxicology, 2003. 15(6): p. 539-552.
9. Osunsanya, T., G. Prescott, and A. Seaton, Acute respiratory effects of particles: mass or number? Occupational and Environmental Medicine, 2001. 58(3): p. 154-159.
10. Oberdörster, G., et al., Translocation of inhaled ultrafine particles to the brain. Inhalation toxicology, 2004. 16(6-7): p. 437-445.
11. ICRP and I.C.o.R. Protection, ICRP Publication 66: Human Respiratory Tract Model for Radiological Protection. 1994: Elsevier Health Sciences.
12. Chen, Z.-H., et al., Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PloS one, 2008. 3(10): p. e3316.
13. Lam, H.C., et al., Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction. The Journal of clinical investigation, 2013. 123(12): p. 5212-5230.
14. MacRedmond, R.E., et al., Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke. Respiratory research, 2007. 8(1): p. 84.
15. Wang, H., et al., Distribution of toxic chemicals in particles of various sizes from mainstream cigarette smoke. Inhalation toxicology, 2016. 28(2): p. 89-94.
16. Finlay, W.H., The mechanics of inhaled pharmaceutical aerosols: an introduction. 2001: Academic Press.
17. Kleinstreuer, C. and Y. Feng, Lung deposition analyses of inhaled toxic aerosols in conventional and less harmful cigarette smoke: a review. International journal of environmental research and public health, 2013. 10(9): p. 4454-4485.
18. Manahan, S.E., Environmental Chemistry, Brooks. Colei, CA, 1984.
19. Hoffmann, D., I. Hoffmann, and K. El-Bayoumy, The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chemical research in toxicology, 2001. 14(7): p. 767-790.
20. Control, C.f.D. and Prevention, How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. 2010.
21. Stabbert, R., et al., Analysis of aromatic amines in cigarette smoke. Rapid Communications in Mass Spectrometry, 2003. 17(18): p. 2125-2132.
22. Luceri, F., et al., Primary aromatic amines from side-stream cigarette smoke are common contaminants of indoor air. Toxicology and industrial health, 1993. 9(3): p. 405-413.
23. Torikaiu, K., et al., Study on tobacco components involved in the pyrolytic generation of selected smoke constituents. Food and chemical toxicology, 2005. 43(4): p. 559-568.
24. Manabe, S. and O. Wada, Carcinogenic tryptophan pyrolysis products in cigarette smoke condensate and cigarette smoke-polluted indoor air. Environmental Pollution, 1990. 64(2): p. 121-132.
25. Hecht, S.S. and D. Hoffmann, Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis, 1988. 9(6): p. 875-884.
26. Humans, I.W.G.o.t.E.o.C.R.t., W.H. Organization, and I.A.f.R.o. Cancer, Smokeless tobacco and some tobacco-specific N-nitrosamines. Vol. 89. 2007: World Health Organization.
27. Lyon, F., IARC monographs on the evaluation of carcinogenic risks to humans. Some Industrial Chemicals, 1994. 60: p. 389-433.
28. From, I., 1.1. Chemical and physical data.
29. Counts, M., et al., Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regulatory Toxicology and Pharmacology, 2005. 41(3): p. 185-227.
30. Bernhard, D., et al., Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. The FASEB Journal, 2005. 19(9): p. 1096-1107.
31. Bernhard, D., A. Rossmann, and G. Wick, Metals in cigarette smoke. IUBMB life, 2005. 57(12): p. 805-809.
32. Caruso, R.V., et al., Toxic metal concentrations in cigarettes obtained from US smokers in 2009: results from the International Tobacco Control (ITC) United States survey cohort. International journal of environmental research and public health, 2013. 11(1): p. 202-217.
33. Pinto, E. and I.M. Ferreira, Cation transporters/channels in plants: tools for nutrient biofortification. Journal of plant physiology, 2015. 179: p. 64-82.
34. Arsenic, I., arsenic compounds (Group 1). IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, 1987. 7.
35. Aitio, A., et al., IARC monographs on the evaluation of carcinogenic risks to humans: beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1993. 58: p. 119-237.
36. Cancer, I.A.f.R.o., IARC monographs on the evaluation of carcinogenic risks to humans, volume 49-Chromium, nickel and welding. Lyon, IARC, 1990, 677 p, 1990.
37. Cancer, I.A.f.R.o., IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Some Aromatic Amines, Anthraquinones and Nitroso Compounds, and Inorganic Fluorides Used in Drinking-water and Dental Preparations. 1982: International Agency for Research on Cancer.
38. Humans, I.W.G.o.t.E.o.C.R.t., Inorganic and organic lead compounds. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 2006. 87: p. 1.
39. Piadé, J.-J., et al., Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicology Reports, 2015. 2: p. 12-26.
40. Fresquez, M.R., R.S. Pappas, and C.H. Watson, Establishment of toxic metal reference range in tobacco from US cigarettes. Journal of Analytical Toxicology, 2013. 37(5): p. 298-304.
41. Pinto, E., et al., Metals transfer from tobacco to cigarette smoke: Evidences in smokers’ lung tissue. Journal of Hazardous Materials, 2017. 325: p. 31-35.
42. Nandi, M., et al., Cadmium content of cigarettes. The Lancet, 1969. 294(7634): p. 1329-1330.
43. Boffetta, P., Carcinogenicity of trace elements with reference to evaluations made by the International Agency for Research on Cancer. Scandinavian journal of work, environment & health, 1993: p. 67-70.
44. Smith, C., S. Livingston, and D. Doolittle, An international literature survey of “IARC Group I carcinogens” reported in mainstream cigarette smoke. Food and Chemical Toxicology, 1997. 35(10): p. 1107-1130.
45. Liu, X., J. Lu, and S. Liu, Synergistic induction of hydroxyl radical-induced DNA single-strand breaks by chromium (VI) compound and cigarette smoke solution. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1999. 440(1): p. 109-117.
46. Feng, Z., et al., Chromium (VI) exposure enhances polycyclic aromatic hydrocarbon–DNA binding at the p53 gene in human lung cells. Carcinogenesis, 2003. 24(4): p. 771-778.
47. Werfel, U., et al., Elevated DNA single-strand breakage frequencies in lymphocytes of welders exposed to chromium and nickel. Carcinogenesis, 1998. 19(3): p. 413-418.
48. Patai, K. and I. Balogh, Nickel-and cadmium-induced fetal myocardial changes in the mouse: the hazards of cigarette smoke in pregnancy. Acta Chirurgica Hungarica, 1988. 29(4): p. 315-321.
49. De Palma, G., et al., Metallic elements in pulmonary biopsies from lung cancer and control subjects. Acta Biomed, 2008. 79(Suppl 1): p. 43-51.
50. Richter, P.A., et al., Peer Reviewed: Trends in Tobacco Smoke Exposure and Blood Lead Levels Among Youths and Adults in the United States: The National Health and Nutrition Examination Survey, 1999–2008. Preventing chronic disease, 2013. 10.
51. Bush, A., Health effects of passive smoking in children, in The tobacco epidemic. 2015, Karger Publishers. p. 97-109.
52. Kazi, T., et al., Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. Journal of Hazardous Materials, 2009. 163(1): p. 302-307.
53. Exley, C., The aluminium-amyloid cascade hypothesis and Alzheimer’s disease. Alzheimer’s Disease, 2005: p. 225-234.
54. Gupta, V.B., et al., Aluminium in Alzheimer’s disease: are we still at a crossroad? Cellular and Molecular Life Sciences CMLS, 2005. 62(2): p. 143-158.
55. Forster, D., et al., Risk factors in clinically diagnosed presenile dementia of the Alzheimer type: a case-control study in northern England. Journal of Epidemiology & Community Health, 1995. 49(3): p. 253-258.
56. Becaria, A., S.C. Bondy, and A. Campbell, Aluminum and copper interact in the promotion of oxidative but not inflammatory events: implications for Alzheimer′s disease. Journal of Alzheimer′s Disease, 2003. 5(1): p. 31-38.
57. Chiba, M. and R. Masironi, Toxic and trace elements in tobacco and tobacco smoke. Bulletin of the World Health Organization, 1992. 70(2): p. 269.
58. Díaz, C., et al., Serum manganese concentrations in a representative sample of the Canarian population. Biological trace element research, 2001. 80(1): p. 43-51.
59. Gorell, J.M., et al., Smoking and Parkinson’s disease A dose–response relationship. Neurology, 1999. 52(1): p. 115-115.
60. Massadeh, A., F. Alali, and Q. Jaradat, Determination of copper and zinc in different brands of cigarettes in Jordan. Acta Chimica Slovenica, 2003. 50(2): p. 375-381.
61. Kocyigit, A., O. Erel, and S. Gur, Effects of tobacco smoking on plasma selenium, zinc, copper and iron concentrations and related antioxidative enzyme activities. Clinical biochemistry, 2001. 34(8): p. 629-633.
62. Rink, L. and H. Kirchner, Zinc-altered immune function and cytokine production. The Journal of nutrition, 2000. 130(5): p. 1407S-1411S.
63. Prasad, A.S. and O. Kucuk, Zinc in cancer prevention. Cancer and metastasis Reviews, 2002. 21(3-4): p. 291-295.
64. Kafai, M.R. and V. Ganji, Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: third National Health and Nutrition Examination Survey, 1988–1994. Journal of trace elements in medicine and biology, 2003. 17(1): p. 13-18.
65. Järup, L., Hazards of heavy metal contamination. British medical bulletin, 2003. 68(1): p. 167-182.
66. Suzuki, T., S. Shishido, and K. Urushiyama, Mercury in cigarettes. The Tohoku journal of experimental medicine, 1976. 119(4): p. 353-356.
67. Wulf, H., et al., Sister chromatid exchange (SCE) in greenlandic eskimos. dose—response relationship between SCE and seal diet, smoking, and blood cadmium and mercury concentrations. Science of the total environment, 1986. 48(1-2): p. 81-94.
68. Adachi, A., et al., Vanadium content of cigarettes. Bulletin of environmental contamination and toxicology, 1998. 61(2): p. 276-280.
69. Goldfine, A.B., et al., Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. The Journal of Clinical Endocrinology & Metabolism, 1995. 80(11): p. 3311-3320.
70. Barceloux, D.G. and D. Barceloux, Vanadium. Journal of Toxicology: Clinical Toxicology, 1999. 37(2): p. 265-278.
71. Goebeler, M., et al., Activation of nuclear factor-kappa B and gene expression in human endothelial cells by the common haptens nickel and cobalt. The Journal of Immunology, 1995. 155(5): p. 2459-2467.
72. Rousseau, M.-C., K. Straif, and J. Siemiatycki, IARC carcinogen update. Environmental health perspectives, 2005. 113(9): p. A580.
73. Antón, M.A.L., et al., Thallium in coal: Analysis and environmental implications. Fuel, 2013. 105: p. 13-18.
74. Hoffmann, D.H., Ilse, The changing cigarette, 1950-1995. Journal of Toxicology and Environmental Health Part A, 1997. 50(4): p. 307-364.
75. MacKown, C.T., S.J. Crafts-Brandner, and T.G. Sutton, Relationships among soil nitrate, leaf nitrate, and leaf yield of burley tobacco. 1999.
76. Rickert, W., J. Robinson, and N. Collishaw, A study of the growth and decay of cigarette smoke NOx in ambient air under controlled conditions. Environment International, 1987. 13(6): p. 399-408.
77. Horton, A. and M. Guerin, Quantitative determination of sulfur compounds in the gas phase of cigarette smoke. Journal of Chromatography A, 1974. 90(1): p. 63-70.
78. Chen, B., et al., Physical characterization of cigarette smoke aerosol generated from a Walton smoke machine. Aerosol Science and Technology, 1990. 12(2): p. 364-375.
79. Bernstein, D.M., A review of the influence of particle size, puff volume, and inhalation pattern on the deposition of cigarette smoke particles in the respiratory tract. Inhalation toxicology, 2004. 16(10): p. 675-689.
80. Adam, T., et al., Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke. Analytical and bioanalytical chemistry, 2009. 394(4): p. 1193-1203.
81. Kane, D.B., et al., Effect of smoking parameters on the particle size distribution and predicted airway deposition of mainstream cigarette smoke. Inhalation toxicology, 2010. 22(3): p. 199-209.
82. Alderman, S.L. and B.J. Ingebrethsen, Characterization of mainstream cigarette smoke particle size distributions from commercial cigarettes using a DMS500 fast particulate spectrometer and smoking cycle simulator. Aerosol Science and Technology, 2011. 45(12): p. 1409-1421.
83. van Dijk, W.D., S. Gopal, and P.T. Scheepers, Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer. Analytical and bioanalytical chemistry, 2011. 399(10): p. 3573-3578.
84. Sahu, S., et al., Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol Air Qual Res, 2013. 13(1): p. 324-32.
85. Li, X., et al., Characterization of particle size distribution of mainstream cigarette smoke generated by smoking machine with an electrical low pressure impactor. Journal of Environmental Sciences, 2014. 26(4): p. 827-833.
86. Okada, T. and K. Matsunuma, Determination of particle-size distribution and concentration of cigarette smoke by a light-scattering method. Journal of Colloid and Interface Science, 1974. 48(3): p. 461-469.
87. Ueno, Y. and L.K. Peters, Size and generation rate of sidestream cigarette smoke particles. Aerosol Science and Technology, 1986. 5(4): p. 469-476.
88. Chung, I.-P. and D. Dunn-Rankin, In situ light scattering measurements of mainstream and sidestream cigarette smoke. Aerosol Science and Technology, 1996. 24(2): p. 85-101.
89. Morawska, L., W. Barron, and J. Hitchins, Experimental deposition of environmental tobacco smoke submicrometer particulate matter in the human respiratory tract. American Industrial Hygiene Association Journal, 1999. 60(3): p. 334-339.
90. Klepeis, N.E., et al., Determining size-specific emission factors for environmental tobacco smoke particles. Aerosol Science & Technology, 2003. 37(10): p. 780-790.
91. Wu, C., et al., Ultrafine particle emissions from cigarette smouldering, incense burning, vacuum cleaner motor operation and cooking. Indoor and Built Environment, 2012. 21(6): p. 782-796.
92. Bodnar, J., et al., Mainstream smoke chemistry analysis of samples from the 2009 US cigarette market. Regulatory Toxicology and Pharmacology, 2012. 64(1): p. 35-42.
93. Shin, H.-J., et al., Effect of cigarette filters on the chemical composition and in vitro biological activity of cigarette mainstream smoke. Food and Chemical Toxicology, 2009. 47(1): p. 192-197.
94. Dickens, C., et al. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose. in Journal of Physics: Conference Series. 2009. IOP Publishing.
95. Lipowicz, P.J., Determination of cigarette smoke particle density from mass and mobility measurements in a Millikan cell. Journal of Aerosol Science, 1988. 19(5): p. 587-589.
96. Johnson, T.J., et al., Steady-state measurement of the effective particle density of cigarette smoke. Journal of Aerosol Science, 2014. 75: p. 9-16.
97. McMurry, P.H., et al., The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Science & Technology, 2002. 36(2): p. 227-238.
98. Johnson, T.J., et al., Transient measurement of the effective particle density of cigarette smoke. Journal of Aerosol Science, 2015. 87: p. 63-74.
99. Russell, A.G. and B. Brunekreef, A focus on particulate matter and health. 2009, ACS Publications.
100. Oberdörster, G., E. Oberdörster, and J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives, 2005: p. 823-839.
101. Stoeger, T., et al., Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental health perspectives, 2006: p. 328-333.
102. Oberdörster, G., Pulmonary effects of inhaled ultrafine particles. International archives of occupational and environmental health, 2000. 74(1): p. 1-8.
103. Jiang, J., et al., Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2008. 2(1): p. 33-42.
104. Leavey, A., et al., Comparison of measured particle lung-deposited surface area concentrations by an Aerotrak 9000 using size distribution measurements for a range of combustion aerosols. Aerosol Science and Technology, 2013. 47(9): p. 966-978.
105. Yu, C. and K. Chandra, Precipitation of submicron charged particles in human lung airways. Bulletin of mathematical biology, 1977. 39(4): p. 471-478.
106. Chan, T.L., et al., Effect of electrostatic charges on particle deposition in a hollow cast of the human larynx-tracheobronchial tree. Journal of Aerosol Science, 1978. 9(5): p. 463-468.
107. Cohen, B.S., et al., Deposition of charged particles on lung airways. Health Physics, 1998. 74(5): p. 554-560.
108. Majid, H., et al., Implementation of charged particles deposition in stochastic lung model and calculation of enhanced deposition. Aerosol Science and Technology, 2012. 46(5): p. 547-554.
109. Hirsikko, A., et al., Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011. 11(2): p. 767-798.
110. Maricq, M.M., Thermal equilibration of soot charge distributions by coagulation. Journal of Aerosol Science, 2008. 39(2): p. 141-149.
111. Lee, E.S., B. Xu, and Y. Zhu, Measurements of ultrafine particles carrying different number of charges in on-and near-freeway environments. Atmospheric environment, 2012. 60: p. 564-572.
112. McRae, D., The physical and chemical nature of tobacco smoke. Rec Adv Tob Sci, 1990. 16: p. 233-323.
113. Hofmann, W., Modelling inhaled particle deposition in the human lung—a review. Journal of Aerosol Science, 2011. 42(10): p. 693-724.
114. Taulbee, D.B. and C. Yu, A theory of aerosol deposition in the human respiratory tract. Journal of Applied Physiology, 1975. 38(1): p. 77-85.
115. Mitsakou, C., C. Helmis, and C. Housiadas, Eulerian modelling of lung deposition with sectional representation of aerosol dynamics. Journal of Aerosol Science, 2005. 36(1): p. 75-94.
116. Yeh, H.-C. and G. Schum, Models of human lung airways and their application to inhaled particle deposition. Bulletin of mathematical biology, 1980. 42(3): p. 461-480.
117. James, A.C., Lung dosimetry. Radon and its decay products in indoor air, 1988: p. 259-309.
118. Asgharian, B., W. Hofmann, and R. Bergmann, Particle deposition in a multiple-path model of the human lung. Aerosol Science & Technology, 2001. 34(4): p. 332-339.
119. Raabe, O.G., Tracheobronchial geometry: human, dog, rat, hamster--a compilation of selected data from the project respiratory tract deposition models. 1976: US Energy Research and Development Administration, Division of Biomedical and Environmental Research.
120. Koblinger, L., Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Physics in medicine and biology, 1985. 30(6): p. 541.
121. Koblinger, L. and W. Hofmann, Monte Carlo modeling of aerosol deposition in human lungs. Part I: Simulation of particle transport in a stochastic lung structure. Journal of Aerosol Science, 1990. 21(5): p. 661-674.
122. Hofmann, W. and L. Koblinger, Monte Carlo modeling of aerosol deposition in human lungs. Part II: Deposition fractions and their sensitivity to parameter variations. Journal of Aerosol Science, 1990. 21(5): p. 675-688.
123. Haefeli‐Bleuer, B. and E.R. Weibel, Morphometry of the human pulmonary acinus. The Anatomical Record, 1988. 220(4): p. 401-414.
124. Ji, J.H. and I.J. Yu, Estimation of human equivalent exposure from rat inhalation toxicity study of silver nanoparticles using multi-path particle dosimetry model. Toxicology Research, 2012. 1(3): p. 206-210.
125. Oberdorster, G., Dosimetric principles for extrapolating results of rat inhalation studies to humans, using an inhaled Ni compound as an example. Health physics, 1989. 57: p. 213-220.
126. Oller, A.R. and G. Oberdörster, Incorporation of particle size differences between animal studies and human workplace aerosols for deriving exposure limit values. Regulatory Toxicology and Pharmacology, 2010. 57(2): p. 181-194.
127. Barnes, P.J., Mediators of chronic obstructive pulmonary disease. Pharmacological reviews, 2004. 56(4): p. 515-548.
128. Salvi, S.S. and P.J. Barnes, Chronic obstructive pulmonary disease in non-smokers. The lancet, 2009. 374(9691): p. 733-743.
129. Eisner, M.D., et al., An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 2010. 182(5): p. 693-718.
130. Barnes, P.J., New anti-inflammatory targets for chronic obstructive pulmonary disease. Nature reviews Drug discovery, 2013. 12(7): p. 543-559.
131. Hogg, J.C., et al., The nature of small-airway obstruction in chronic obstructive pulmonary disease. New England Journal of Medicine, 2004. 350(26): p. 2645-2653.
132. Sin, D.D. and S.P. Man, Cooling the fire within: inhaled corticosteroids and cardiovascular mortality in COPD. CHEST Journal, 2006. 130(3): p. 629-631.
133. Lecker, S.H., A.L. Goldberg, and W.E. Mitch, Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. Journal of the American Society of Nephrology, 2006. 17(7): p. 1807-1819.
134. Luo, H., J. Wong, and B. Wong, Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovascular research, 2009. 85(2): p. 347-356.
135. Ding, W.-X., et al., Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. The American journal of pathology, 2007. 171(2): p. 513-524.
136. Kumar, P., et al., Autophagy and transporter-based multi-drug resistance. Cells, 2012. 1(3): p. 558-575.
137. Mortimore, G.E., N.J. Hutson, and C.A. Surmacz, Quantitative correlation between proteolysis and macro-and microautophagy in mouse hepatocytes during starvation and refeeding. Proceedings of the National Academy of Sciences, 1983. 80(8): p. 2179-2183.
138. Haspel, J.A. and A.M. Choi, Autophagy: a core cellular process with emerging links to pulmonary disease. American journal of respiratory and critical care medicine, 2011. 184(11): p. 1237-1246.
139. Ryter, S.W. and A.M. Choi, Autophagy in the lung. Proceedings of the American Thoracic Society, 2010. 7(1): p. 13-21.
140. Kim, J., et al., AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature cell biology, 2011. 13(2): p. 132-141.
141. Rabinowitz, J.D. and E. White, Autophagy and metabolism. Science, 2010. 330(6009): p. 1344-1348.
142. Yorimitsu, T. and D.J. Klionsky, Autophagy: molecular machinery for self-eating. Cell Death & Differentiation, 2005. 12: p. 1542-1552.
143. Takasaka, N., et al., Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. The Journal of Immunology, 2014. 192(3): p. 958-968.
144. Fujii, S., et al., Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology, 2012. 1(5): p. 630-641.
145. Guo, Y., et al., Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 2013. 188(11): p. 1313-1320.
146. Wu, M.-Y., et al., Steroid receptor coactivator 3 regulates autophagy in breast cancer cells through macrophage migration inhibitory factor. Cell research, 2012. 22(6): p. 1003-1021.
147. Xia, X., et al., Glucocorticoid‐induced autophagy in osteocytes. Journal of bone and mineral research, 2010. 25(11): p. 2479-2488.
148. Laane, E., et al., Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy. Cell Death & Differentiation, 2009. 16(7): p. 1018-1029.
149. Bitto, A., et al., Long-term IGF-I exposure decreases autophagy and cell viability. PLoS One, 2010. 5(9): p. e12592.
150. Pansters, N.A., et al., Synergistic stimulation of myogenesis by glucocorticoid and IGF-I signaling. Journal of Applied Physiology, 2013. 114(9): p. 1329-1339.
151. An, C.H., et al., TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2012. 303(9): p. L748-L757.
152. Scheckman, J.H., P.H. McMurry, and S.E. Pratsinis, Rapid characterization of agglomerate aerosols by in situ mass− mobility measurements. Langmuir, 2009. 25(14): p. 8248-8254.
153. Tajima, N., et al., Mass range and optimized operation of the aerosol particle mass analyzer. Aerosol Science and Technology, 2011. 45(2): p. 196-214.
154. Li, W. and P. Hopke, Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Science and technology, 1993. 19(3): p. 305-316.
155. Baker, R.R., Product formation mechanisms inside a burning cigarette. Progress in Energy and Combustion Science, 1981. 7(2): p. 135-153.
156. Jenkins, R.A., B. Tomkins, and M.R. Guerin, The chemistry of environmental tobacco smoke: composition and measurement. 2000: CRC Press.
157. Perfetti, T.A. and A. Rodgman, The complexity of tobacco and tobacco smoke. Beiträge zur Tabakforschung/Contributions to Tobacco Research, 2014. 24(5): p. 215-232.
158. Guerin, M., C. Higgins, and R. Jenkins, Measuring environmental emissions from tobacco combustion: sidestream cigarette smoke literature review. Atmospheric Environment (1967), 1987. 21(2): p. 291-297.
159. Ning, Z., et al., Black carbon mass size distributions of diesel exhaust and urban aerosols measured using differential mobility analyzer in tandem with Aethalometer. Atmospheric environment, 2013. 80: p. 31-40.
160. Asbach, C., et al., A low pressure drop preseparator for elimination of particles larger than 450 nm. Aerosol and Air Quality Resarch, 2011. 11(5): p. 487-496.
161. DeCarlo, P.F., et al., Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 2004. 38(12): p. 1185-1205.
162. Borgerding, M. and H. Klus, Analysis of complex mixtures–cigarette smoke. Experimental and Toxicologic Pathology, 2005. 57: p. 43-73.
163. Hussein, T., et al., Modeling regional deposited dose of submicron aerosol particles. Science of the Total Environment, 2013. 458: p. 140-149.
164. Bennett, W.D. and K.L. Zeman, Effect of body size on breathing pattern and fine-particle deposition in children. Journal of Applied Physiology, 2004. 97(3): p. 821-826.
165. Vu, T.V., et al., Physical properties and lung deposition of particles emitted from five major indoor sources. Air Quality, Atmosphere & Health, 2017. 10(1): p. 1-14.
166. Martonen, T. and F. Miller, Dosimetry and species sensitivity: key factors in hazard evaluation using animal exposure data. Journal of Aerosol Science, 1986. 17(3): p. 316-319.
167. Tankersley, C.G., R.S. Fitzgerald, and S.R. Kleeberger, Differential control of ventilation among inbred strains of mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1994. 267(5): p. R1371-R1377.
168. Winkler-Heil, R. and W. Hofmann, Modeling particle deposition in the Balb/c mouse respiratory tract. Inhalation toxicology, 2016. 28(4): p. 180-191.
169. Hwang, J.-w., et al., Cigarette smoke-induced autophagy is regulated by SIRT1–PARP-1-dependent mechanism: implication in pathogenesis of COPD. Archives of biochemistry and biophysics, 2010. 500(2): p. 203-209.
170. Ito, K., et al., Decreased histone deacetylase activity in chronic obstructive pulmonary disease. New England Journal of Medicine, 2005. 352(19): p. 1967-1976.
171. Mizushima, N. and T. Yoshimori, How to interpret LC3 immunoblotting. Autophagy, 2007. 3(6): p. 542-545.
172. Luo, Y., et al., Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKα dependent manner. Experimental gerontology, 2011. 46(11): p. 860-867.
|