博碩士論文 106322042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.135.194.138
姓名 盤森(Sen Pan)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 人行吊橋的現有內力評估及動力分析
(A Method of Internal Force Estimation and Dynamic Analysis for Suspension Footbridges)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 薄殼結構非線性運動之向量式有限元分析法★ 雷射掃描技術於鋼軌磨耗之檢測
★ 動態加載下的等效單軸應變與 應力材料組成模型★ PISO三維流體動力學之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究使用向量式有限元(VFIFE)建立一套適用於吊橋動力行為分析的數值方法,研究的第一階段依據橋梁設計資料、現地量測資料、光達掃描點雲建立吊橋之數值模型。再使用VFIFE理論,透過一套幾何構形迭代程序,反算出模型在承受自身材料重量下,維持其現有構形的內力分布狀態。並與現地實驗比對最大索力值、振態頻率識別,驗證成橋內力與實際情形的符合程度。後續動力分析則對已校正之模型施加不同形式之外力,本研究使用人流概念模擬行人移動荷載的分布情形,行人個體在橋面上模擬為移動質點,經由不同運動狀態的定義,整體人流對橋面行為將造成不同的外力影響。另外採用振動台概念對模型地表支承處施加位移控制,真實模擬吊橋受到地震歷時的作用。本文以新北市碧潭吊橋為例,綜合兩項外力條件,考慮在日常使用狀況、高承載情況下,外力條件造成橋面的振動情形變化,並根據規範對此時的行人舒適度給予分級,同時對模擬過程中各項破壞模式進行檢核。
摘要(英) This thesis proposes a systematic dynamic analysis procedure to predict the behavior of suspension footbridges with different load patterns, including pedestrian load and seismic load. The parameters of model, properties of materials and sections has been confirmed by the field measured data and point clouds of 3D LiDar. In the first stage of analysis, the internal force of members will be calculated through geometric shape iteration by the VFIFE (Vector Form Intrinsic Finite Element) method. The accuracy of results has been confirmed through comparison the internal forces with the tension force in cables determined by experiments and modal analysis. This calibrated numerical analysis model is used for dynamic behavior prediction of suspension footbridges. Pedestrian load has been simulated by the concept of pipe-flow, applied on the bridge models in the form of moving masses. The source of seismic load is spectrum compatible time series, and it controls the displacement of joints which has restrained with boundary conditions from the ground. A comprehensive application about estimating the serviceability of Bi-Tan footbridges with normal and extreme load conditions has been conducted in this research, and the safety performance in different failure modes has been checked in addition.
關鍵字(中) ★ 吊橋內力
★ 向量式有限元
★ 非線性
★ 大變形
★ 行人荷載
★ 人工地震
關鍵字(英) ★ footbridges
★ VFIFE
★ non-linear
★ large displacement
★ pedestrian load
★ spectrum matching
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文獻回顧 3
2.1 小規模吊橋設計與動態特性概述 3
2.2 吊橋的非線性效應 6
2.3 纜索元素模擬 7
2.4 人流系統模擬 9
2.5 人工地震方法 15
2.6 向量式有限元理論 17
第三章 向量式有限元分析 19
3.1 點值描述 19
3.2 途徑單元 21
3.3 虛擬逆向剛體運動 22
3.4 內力求解算例 24
3.5 運動公式的求解 28
3.6 運動約束條件 31
3.7 向量式有限元分析流程 32
第四章 模型建立與成橋分析 33
4.1 模型參數定義 33
4.2 模型建立 39
4.3 纜索模擬驗證 50
4.4 成橋分析 53
第五章 實橋分析 63
5.1 人流系統之數值架構 63
5.2 行人荷載分析案例 68
5.3 人工地震製作 74
5.4 人工地震加載案例 80
第六章 特殊案例模擬 84
6.1 模擬配置 84
6.2 橋面振動分析 85
6.3 潛在破壞模式分析 87
6.4 橋面傾斜情形 96
第七章 結論與建議 98
7.1 結論 98
7.2 建議 99
參考文獻 100
附錄A 人工地震加速度歷時、頻譜與各積分歷時 105
參考文獻 [1] 日本道路協會,小規模吊橋指針・同解説,1984。
[2] 王序森、唐寰澄,橋梁工程,中國鐵道出版社,1995。
[3] Brownjohn, J., A. Dumanoglu, and C. Taylor, “Dynamic investigation of a suspension footbridge”, Engineering Structures, Vol. 16, pp. 395-406, 1994.
[4] Fleming, J.F., “Nonlinear static analysis of cable-stayed bridge structures”, Computers & Structures, Vol. 10(4), pp. 621-635, 1979.
[5] McKenna, P. and W. Walter, “Nonlinear oscillations in a suspension bridge”, Archive for rational mechanics and Analysis, Vol. 98(2), pp. 167-177, 1987.
[6] Nazmy, A.S. and A.M. Abdel-Ghaffar, “Three-dimensional nonlinear static analysis of cable-stayed bridges”, Computers & structures, Vol. 34(2), pp. 257-271, 1990.
[7] 丁承先、段元鋒、吳東岳,向量式結構力學,北京:科學出版社,2012。
[8] Ehrenburg, D., “Transmission line catenary calculations”, Transactions of the American Institute of Electrical Engineers, Vol. 54(7), pp. 719-728, 1935.
[9] Ernst, J., “Der E-Modul von Seilen unter berucksichtigung des Durchhanges”, Der Bauingenieur, Vol. 40(2), pp. 52-55, 1965.
[10] Karoumi, R., “Some modeling aspects in the nonlinear finite element analysis of cable supported bridges”, Computers & Structures, Vol. 71(4), pp. 397-412, 1999.
[11] Dallard, P., et al., “The London millennium footbridge”, Structural Engineer, Vol. 79(22), pp. 17-21, 2001.
[12] Dallard, P., et al., “London Millennium Bridge: pedestrian-induced lateral vibration”, Journal of Bridge Engineering, Vol. 6(6), pp. 412-417, 2001.
[13] Piccardo, G. and F. Tubino, “Parametric resonance of flexible footbridges under crowd-induced lateral excitation”, Journal of Sound and Vibration, Vol. 311(1-2), pp. 353-371, 2008.
[14] Bachmann, H. and W. Ammann, “Vibrations in structures: induced by man and machines”, Vol. 3, 1987.
[15] Pimentel, R., A. Pavic, and P. Waldron, “Vibration performance of footbridges established via modal testing”, IABSE Symp. “Structures for the Future—The Search for Quality”, Rio de Janeiro, Brazil, 1999.
[16] Station, B.R. and F. Harper, “The forces applied to the floor by the foot in walking”, HM Stationery Office, 1961.
[17] Harper, F., “The mechanics of walking”, Research applied in Industry, Vol. 15(1), pp. 23-28, 1962.
[18] Galbraith, F. and M. Barton, “Ground loading from footsteps”, The Journal of the Acoustical Society of America, Vol. 48(5B), pp. 1288-1292, 1970.
[19] Andriacchi, T., J. Ogle, and J. Galante, “Walking speed as a basis for normal and abnormal gait measurements”, Journal of biomechanics, Vol. 10(4), pp. 261-268, 1977.
[20] Wheeler, J.E., “Prediction and control of pedestrian-induced vibration in footbridges”, Journal of the structural division, Vol. 108(9), pp. 2045-2065, 1982.
[21] Blanchard, J., B. Davies, and J. Smith, “Design criteria and analysis for dynamic loading of footbridges”, Proceeding of a Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory, Crowthorne, Berkshire, England, May 19, 1977, 1977.
[22] Ohlsson, S.V., “Floor vibrations and human discomfort”, Chalmers University of Technology, Division of Steel and Timber Structures, 1982.
[23] Kerr, S.C., “Human induced loading on staircases”, University of London, 1998.
[24] Živanović, S., A.L.E.K.S.A.N.D.A.R. Pavic, and P.A.U.L. Reynolds, “Vibration serviceability of footbridges under human-induced excitation: a literature review”, Journal of sound and vibration, Vol. 279(1-2), pp. 1-74, 2005.
[25] Venuti, F., L. Bruno, and N. Bellomo, “Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges”, Mathematical and Computer Modelling, Vol. 45(3-4), pp. 252-269, 2007.
[26] Bonzani, I. and L. Mussone, “From experiments to hydrodynamic traffic flow models: I—Modelling and parameter identification”, Mathematical and computer modelling, Vol. 37(12-13), pp. 1435-1442, 2003.
[27] Newmark, N.M., “Effects of earthquakes on dams and embankments”. Geotechnique, Vol. 15(2), pp. 139-160, 1965.
[28] Watson-Lamprey, J. and N. Abrahamson, “Selection of ground motion time series and limits on scaling”, Soil Dynamics and Earthquake Engineering, Vol. 26(5), pp. 477-482, 2006.
[29] Brillinger, D.R., “Time series: data analysis and theory”, Siam, Vol. 36, 1981.
[30] Kaul, M.K., “Spectrum-consistent time-history generation”, Journal of the Engineering Mechanics Division, Vol. 104(4), pp. 781-788, 1978.
[31] Lilhanand, K. and W. Tseng, “Generation of synthetic time histories compatible with multiple-damping design response spectra”, Transactions of the 9th international conference on structural mechanics in reactor technology, Vol. K1, 1987.
[32] Abrahamson, N., “Non-stationary spectral matching”, Seismological research letters, Vol. 63(1), pp. 30, 1992.
[33] Hancock, J., et al., “An improved method of matching response spectra of recorded earthquake ground motion using wavelets”, Journal of earthquake engineering, Vol. 10(spec01), pp. 67-89, 2006.
[34] Al Atik, L. and N. Abrahamson, “An improved method for nonstationary spectral matching”, Earthquake Spectra, Vol. 26(3), pp. 601-617, 2010.
[35] 鄭凱文,「三維顆粒介質與變形體互制行為之數值模擬」,國立中央大學土木工程研究所,碩士論文,民國92年。
[36] 陳世凱,「向量式有限元素法於空間桁架之應用」,中原大學土木工程研究所,碩士論文,民國93年。
[37] Ting, E.C., C. Shih, and Y.-K. Wang, “Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a plane frame element”, Journal of Mechanics, Vol. 20(2), pp. 113-122, 2004.
[38] Ting, E.C., C. Shih, and Y.-K. Wang, “Fundamentals of a vector form intrinsic finite element: Part II. plane solid elements”, Journal of Mechanics, Vol. 20(2), pp. 123-132, 2004.
[39] 王仁佐,「向量式結構運動分析」,國立中央大學土木工程研究所,博士論文,民國94年。
[40] 吳東岳等,「向量式有限元法於三維固體運動之研究」,中國土木水利工程學刊,19(1),79-90頁,民國96年。
[41] 賴哲宇,「向量式有限元素法之分散式計算應用於平面構架運動分析」,中原大學土木工程研究所,碩士論文,民國95年。
[42] 陳彥樺,「移動質量與荷載作用下之剛架結構動力行為分析」,中央大學土木工程研究所,碩士論文,民國96年。
[43] 施柔依,「向量式有限元運用於車軌橋互制數值模擬分析」,國立中央大學土木工程研究所,碩士論文,民國99年。
[44] 陳世凱,「橋梁非線性行為之向量式有限元分析法」,國立中央大學土木工程研究所,博士論文,民國100年。
[45] 國立中央大學橋梁工程研究中心,「碧潭吊橋安全監測委託技術服務案」,民國105年5月。
[46] 和建工程顧問,「十分風景區觀瀑吊橋整修工程竣工圖」,民國102年3月。
[47] 和建工程顧問,「十分風景區觀瀑吊橋橋面調整工程」,民國104年8月。
[48] 馮豐隆,「木材檢尺與分等」,森林測計學,國立中興大學森林調查測計研究室,民國93年。
[49] Wang, P., T. Tseng, and C. Yang, “Initial shape of cable-stayed bridges”, Computers & Structures, Vol. 46(6), pp. 1095-1106, 1993.
[50] 邱鉑軒,「根據微振量測進行人行吊橋之振態參數識別、動力特性探討及穩定性評估」,國立雲林科技大學營建工程系營建工程組,碩士論文,民國105年。
[51] 中華民國內政部營建署,建築物耐震設計規範及解說,民國100年7月。
[52] 牛志國等,「基於水工標準反應譜的人工地震動合成及其校正」,三峽大學學報(自然科學版),28(6),513-517頁,2006年。
[53] 日本工業標準委員會,日本工業規格(JIS),1990。
[54] 李承儒,「向量式有限元應用於懸索橋非線性動力分析」,國立中央大學土木工程研究所,碩士論文,民國104年。
[55] Rankine, W.J.M., II, “On the stability of loose earth”, Philosophical transactions of the Royal Society of London, Vol. 147, pp. 9-27, 1857.
[56] 環亞大地工程技師事務所,地質鑽探工程報告書,新北市新店區碧潭段130, 141-152, 154-164, 563地號,民國103年8月。
[57] 中華民國交通部,公路橋梁設計規範,民國98年。
指導教授 王仲宇 審核日期 2018-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明