參考文獻 |
[1] Aristoff, J.M., Truscott, T.T., Techet, A.H., and Bush, J.W.M., 2010. The water entry of decelerating spheres. Physics of Fluids, 22, 032102.
[2] Blevins, R.D., 1984. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Co., New York, U.S.A.
[3] Cabot, W., Moin, P., 2000. Approximate wall boundary conditions in the large eddy simulation of high Reynolds number flow. Flow Turbulence and Combustion, 63, 269-291.
[4] Chen, X.-M., (2014) Development and Verification of the Normal and Tangential Equivalent Linear Contact Springs of Egg Shape Particles. Master Thesis of National Central University, Department of Civil Engineering.
[5] Chu, C.-R., Chung, C.-H., Wu, T.-R., Wang, C.-Y. (2016) Numerical analysis of free surface flow over a submerged rectangular bridge deck. J. of Hydraulic Eng. ASCE. 142 (12), 10.1061/(ASCE)HY.1943-7900.0001177.
[6] Chu, C.-R., Lin, Y.-A., Wu, T.-R., Wang, C.-Y. (2018) Hydrodynamic force on a cirular cylinder beneath the water surface. Computers and Fluids. 172, 10.1016/j.compfluid.2018.05.032.
[7] Clift, R., Grace, J.R. and Weber, M.E. 1978. Bubbles, Drops and Particles, Academic Press, p.380.
[8] Deardorff, J.W., 1970. A numerical study of three dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453-480.
[9] DeLong, M., 1997. Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-Schwarz preconditioned FGMRES. Technical Report LA-UR-97-4181, Los Alamos National Laboratory, New Mexico, U.S.A.
[10] Odar, F., Hamilton, W. S., 1964, Forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 18, 302-314.
[11] Hertz, H. 1896. Uber die beruhrung fester elastischer Korper (On the contact of rigid elastic solids). In: Miscellaneous Papers. Jones and Schott, Editors, J. reine und angewandte Mathematik 92, Macmillan, London, p. 156 English translation: Hertz, H.
[12] Hertz, H. R., 1882, Ueber die Beruehrung elastischer Koerper (On Contact Between Elastic Bodies), in Gesammelte Werke (Collected Works), Vol. 1, Leipzig, Germany, 1895.
[13] Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput Phys. 39(1), 201-225.
[14] Hoerner, S.F., 1965. Fluid Dynamic Drag: Theoretical, Experimental and Statistical Information. Hoerner Fluid Dynamics, New Jersey, U.S.A.
[15] Hsu, H.-C., Capart, H., 2007. Enhanced upswing in immersed collisions of tethered spheres. Physics of Fluids, 19, 101701.
[16] Jan, C.-D., Chen, J.-C. 1997. Movements of a sphere rolling down an inclined plane. J. of Hydraulic Research, 35, 689-706.
[17] Martino, R., Paterson, A. Piva, M.F. 2015. Experimental and analytical study of the motion of a sphere falling along an inclined plane in still water. Powder Technology, 283 (2015), 227-233.
[18] O’Neil, J., Meneveau, C., 1997. Subgrid-scale stresses and their modelling in a turbulent plane wake. J. Fluid Mech. 349, 253-293.
[19] Pope, S.B., 2000. Turbulent Flows, Cambridge University Press. Cambridge, U.K.
[20] Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Review, 91, 99-164.
[21] Wu, T.-R., Chu, C.-R., Huang, C.-J., Wang, C.-Y., Chien, S.-Y., Chen, M.-Z., 2014. A two-way coupled simulation of moving solids in free-surface flows. Computers and Fluids, 100, 347-355.
[22] Yang, F.-L., Hunt, M.L., 2006. Dynamics of particle-particle collisions in a viscous liquid. Physics of Fluids, 18, 121506. |