博碩士論文 105322048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.144.202.167
姓名 張雅惠(Ya-Hui Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 最終處置場低鹼性封塞混凝土膠結材優化及其與處置環境互動研究
(Optimization of low-pH sealing concrete at final disposal repository and its interaction with in-situ material)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 最終處置場為長期貯存具高放射性用過核子燃料之設施,有效及安全的將用過核子燃料進行儲放為各國高度重視的長期安全性議題。處置場地下設施所使用之混凝土,為避免影響緩衝材料的預期成效,各國傾向採用低鹼性混凝土。目前低鹼性混凝土(Low pH concrete)係由瑞典、芬蘭及日本等各國進行國際合作研究所獲得成果為基礎,主要以使用矽灰、飛灰、爐石粉等礦物摻料,進行重量比例取代卜特蘭水泥製成。
為了瞭解處置場用混凝土與其他障壁材料及場外周邊環境之交互作用,
以及礦物摻料(矽灰、飛灰)對降低處置場混凝土孔隙溶液pH 值及其他工程特性之影響,本研究分別進行處置場低鹼性封塞用自充填混凝土(SCC)於使用不同礦物摻料下之工程特性,以及透過文獻蒐集彙整之方式瞭解混凝土與處置場周邊環境之互動關係,並於工程特性探討部分,使用礦物摻料矽灰及飛灰部分取代水泥,對混凝土之新拌性質、硬固性質及耐久性質等試驗進行分析與探討。
於處置場環境互動關係部分,國際文獻對混凝土孔隙溶液長期模擬結果顯示,其對處置場膨潤土影響範圍僅落在交界面10 cm 之範圍內,並在30,000 年時不再有更進一步影響範圍。膨潤土及混凝土鄰近之交界面處孔隙率變化反應水力傳輸之趨勢。
處置場封塞用SCC 工程特性部分,總取代量達50 %,且在固定矽灰取代水泥比例35 %之情況下,混凝土之強度、體積穩定性、耐久性及水密性等表現皆較普通混凝土佳,並且能在28 天齡期即符合處置場低鹼性混凝土pH 值? 11 之要求;在提高膠結材料總量上亦有相同之性質表現。
摘要(英) Final disposal depository is where nuclear canister been replaced. To let the radioactive waste safety and efficiently disposed on the long term is an important issue for world wide. Due to the depth of repository, concrete might have influence on near field, buffer and backfill material. Low pH concrete has been obtained by Sweden, Finland, Japan, and other countries during an international cooperation research. It is mainly made of fly ash, slag, and silica fume with different weight replace on cement.
In this study, the engineering characteristics of self-compacting concrete (SCC) with different mineral materials mixed for low pH concrete plug, and the interaction between concrete-bentonite, and concrete-near field materials are being studied by having mechanical tests ,and collecting research separately.
After a long-term evaluation on the pore solution of concrete-bentonite interface, the impact range on bentonite only fell within 10 cm of the interface, and no longer had any further influence at 30,000 years. The change of porosity at the interface between bentonite and concrete implies the water transport trend between materials.
While the total replacement reach 50% with silica fume replace at 35% to cement, strength, volume stability, durability, and water permeability are more advance than Portland concrete. Also, the requirement of pH ? 11can be fulfill at age of 28 at this mix design. The same characteristics were found on a higher binder percentage of concrete.
關鍵字(中) ★ 低鹼性混凝土
★ 自充填混凝土
★ 水密性
關鍵字(英) ★ Low pH concrete
★ self-compacting concrete
★ water permeability
論文目次 摘要 ........................................................................................................................ i
Abstract ................................................................................................................ iii
致謝 ....................................................................................................................... v
目錄 ..................................................................................................................... vii
圖目錄 .................................................................................................................. xi
表目錄 ............................................................................................................... xvii
第一章 緒論 ................................................................................................... 1
1-1 研究背景 ................................................................................................ 1
1-2 研究目的 ................................................................................................ 2
1-3 研究內容 ................................................................................................ 2
1-4 名詞說明 ................................................................................................ 3
第二章 文獻回顧 ........................................................................................... 4
2-1 最終處置場 ............................................................................................ 4
2-1-1 最終處置場型態 ........................................................................ 4
2-1-2 處置場EBS 配置 ....................................................................... 7
2-1-3 處置場各設施功能 .................................................................... 7
2-2 低鹼性混凝土........................................................................................ 8
2-2-1 對膨潤土之影響 ........................................................................ 8
2-2-2 礦物摻料 .................................................................................... 9
2-3 封塞用混凝土...................................................................................... 10
2-3-1 處置場封閉階段之封塞要求 .................................................. 11
2-3-2 混凝土配比設計 ...................................................................... 12
2-3-3 抗壓強度 .................................................................................. 17
2-3-4 體積穩定性及耐久性 .............................................................. 18
2-3-5 水密特性 .................................................................................. 20
第三章 混凝土與相鄰材料的交互作用 ..................................................... 22
3-1 傳輸作用 .............................................................................................. 22
3-2 混凝土與周邊環境之交互作用 ......................................................... 23
3-3 混凝土與膨潤土之交互作用 ............................................................. 24
3-3-1 傳輸室試驗 .............................................................................. 25
3-3-2 溫度效應 .................................................................................. 26
3-4 數值模擬方法...................................................................................... 27
3-4-1 礦物反應 .................................................................................. 29
3-4-2 邊界條件 .................................................................................. 32
3-4-3 孔隙率 ...................................................................................... 32
3-4-4 溫度 .......................................................................................... 33
3-4-5 擴散係數 .................................................................................. 33
3-4-6 陽離子交換能力 ...................................................................... 33
3-5 長期演化模擬結果 ............................................................................. 34
3-5-1 各材料界面pH 值變化 ........................................................... 34
3-5-2 孔隙率演化 .............................................................................. 36
3-5-3 溫度效應影響 .......................................................................... 40
3-6 混凝土-膨潤土界面互動 .................................................................... 41
第四章 實驗規劃 ......................................................................................... 43
4-1 試驗計畫 .............................................................................................. 43
4-2 試驗材料 .............................................................................................. 48
4-2-1 水泥 .......................................................................................... 48
4-2-2 礦物摻料 .................................................................................. 49
4-2-3 石灰石粉 .................................................................................. 50
4-2-4 粗粒料 ...................................................................................... 51
4-2-5 細粒料 ...................................................................................... 52
4-2-6 拌合水 ...................................................................................... 54
4-2-7 強塑劑 ...................................................................................... 54
4-3 試驗配比與編號 ................................................................................. 55
4-3-1 前導試驗 .................................................................................. 55
4-3-2 自充填混凝土性質研究 .......................................................... 57
4-4 試驗方法 .............................................................................................. 60
4-4-1 孔隙溶液pH 值檢測 ............................................................... 60
4-4-2 混凝土配比篩選 ...................................................................... 72
4-4-3 流下性試驗(漏斗法) ............................................................... 72
4-4-4 凝結時間試驗 .......................................................................... 73
4-4-5 角柱乾縮試驗 .......................................................................... 73
4-4-6 抗硫酸鹽侵蝕試驗 .................................................................. 73
4-4-7 彈性模數試驗 .......................................................................... 73
4-4-8 快速氯離子滲透試驗 .............................................................. 77
4-4-9 水壓下貫入試驗 ...................................................................... 79
4-5 試驗儀器設備...................................................................................... 81
4-5-1 混凝土拌合試驗 ...................................................................... 81
4-5-2 硬固性質試驗 .......................................................................... 83
4-5-3 體積穩定性及耐久性質 .......................................................... 85
4-5-4 微觀試驗 .................................................................................. 87
第五章 前導試驗 ......................................................................................... 88
5-1 pH 影響因子探討 ................................................................................. 88
5-1-1 含水狀態 .................................................................................. 89
5-1-2 密封靜置時間 .......................................................................... 93
5-1-3 粒徑大小 .................................................................................. 96
5-1-4 溶液溫度 .................................................................................. 98
5-1-5 重複性試驗 ............................................................................ 100
5-2 漿體性質探討.................................................................................... 101
5-2-1 pH 值試驗 ............................................................................... 102
5-2-2 抗壓強度 ................................................................................ 105
5-3 綜合討論 ............................................................................................ 108
5-3-1 pH 值本土化檢測程序建立與合適性評估 ........................... 108
5-3-2 礦物摻料初步性質 ................................................................ 112
第六章 混凝土試驗結果與分析 ............................................................... 119
6-1 矽灰取代水泥性質探討 (雙系統) ................................................... 122
6-1-1 新拌性質分析 ........................................................................ 122
6-1-2 硬固性質分析 ........................................................................ 128
6-1-3 pH 值 ....................................................................................... 132
6-1-4 體積穩定性與耐久性 ............................................................ 136
6-1-5 快速氯離子滲透試驗 (RCPT) ............................................. 141
6-1-6 水壓下貫入試驗 (水密性) ................................................... 143
6-2 矽灰與飛灰取代水泥性質探討 (三系統) ....................................... 145
6-2-1 新拌性質分析 ........................................................................ 145
6-2-2 硬固性質分析 ........................................................................ 154
6-2-3 pH 值 ....................................................................................... 159
6-2-4 體積穩定性與耐久性 ............................................................ 163
6-2-5 水壓下貫入試驗 (水密性) ................................................... 167
6-3 微觀性質分析.................................................................................... 170
6-3-1 XRD ......................................................................................... 170
6-3-2 SEM/EDS ................................................................................ 173
6-4 綜合討論 ............................................................................................ 180
6-4-1 SCC 工作性 ............................................................................. 180
6-4-2 抗壓強度、彈性模數及水密性 ............................................ 180
6-4-3 體積穩定性與耐久性 ............................................................ 183
6-4-4 pH 值與微觀特性 ................................................................... 183
第七章 結論與建議 ................................................................................... 185
7-1 結論 .................................................................................................... 185
7-2 建議 .................................................................................................... 186
參考文獻 ....................................................................................................... 187
附錄 ....................................................................................................... 197
參考文獻 [1] 行政院原子能委員會網頁,放射性廢棄物最終處置(民106 年3 月31
日)。檢自https://www.aec.gov.tw/核物料管制/管制背景/放射性廢棄物
最終處置--6_47_3823.html (Jan. 23, 2018)
[2] 《放射性物料管理法》,「高放射性廢棄物最終處置及其設施安全管理
規則」,會物字第1020001007 號 令(民102 年1 月18 日)。
[3] Margit S., and Timo V. (2005). “Long-term safety aspects of the use of
cement in a repository for spent fuel,” R&D on Low-pH cement for a
geological repository, second low-pH workshop, Enresa, SKB and the
ESDRED-project. Madrid, June 15-16. pp. 27-40.
[4] Thurner, E., Pettersson, S., Snellman, M., and Autio, J. (2006). “KBS-3H –
development of the horizontal disposal concept,” International topical
meeting TOPSEAL 2006, Olkiluoto Information Centre. Finland,
September 17-20. pp. 40-44.
[5] SKB. (2006). “Long-term safety for KBS-3 repositories at Forsmark and
Laxemar – a first evaluation,” SKB TR-06-09, Stockholm. pp. 11, 43.
[6] Bamforth P.B., Baston G.M.N., Berry J.A., Glasser F.P., Heath T.G.,
Jackson C.P., Savage D. and Swanton S.W. (2012). “Cement materials for
use as backfill, sealing and structural materials in geological disposal
concepts. A review of current status,” Serco, RP0618-252A, United
Kingdom.
[7] SKB. (2008). “Horizontal deposition of canisters for spent nuclear fuel,”
SKB TR-08-03, Summary of the KBS-3H Project 2004-2007, Stockholm.
[8] Svensk Karnbranslehantering AB. (2010). “Design and production of the
KBS?3 repository,” SKB TR-10-12, SKB, Stockholm, pp. 29-39.
[9] Vuorinen, U., and Lehikoinen, J. (2005). “Low-pH grouting cements ?
results of leaching experiments and modelling,” R&D on Low-pH cement
for a geological repository, second low-pH workshop, Enresa, SKB and the
ESDRED-project. Madrid, June 15-16. pp. 98-110.
[10] Savage, D., and Benbow, S. (2007). “Low pH Cements,” SKI Report
2007:32.
[11] Fernandez, R., Cuevas, J., and Mader, U. K. (2009). “Modelling concrete
interaction with a bentonite barrier,” Eur. J. Mineral, Vol. 21. pp. 177-191.
[12] Bradbury, M.H. and Baeyens, B. (2003). “Porewater chemistry in
compacted re-saturated MX-80 bentonite,” J. Contam. Hydrol. , Vol. 61
(1-4). pp. 329-338.
[13] 黃兆龍,《混凝土摻料(附加劑)》,臺灣公路工程月刊工程材料及土壤類
專輯,1990 年4 月。
[14] Lee N.K., Jang J.G., and Lee H.K. (2014). “Shrinkage characteristics of
alkali-activated fly ash/slag paste and mortar at early ages,” Cement and
Concrete Composites. pp. 239-248.
[15] SKB. (2017). “Safety functions, performance targets and technical design
requirements for a KBS-3V repository,” Posiva SKB Report 01,
Karnbranslehantering AB and Posiva Oy.
[16] SKB. (2010). “Design, production and initial state of the backfill and plug
in deposition tunnels,” SKB TR-10-16, SKB, Stockholm, pp. 31, 82.
[17] Keto, P., Mamunul Hassan, Md., Karttunen, P., Kiviranta, L., Kumpulainen,
S., Korkiala-Tanttu, L., Koskinen, V., Jalonen, T., Koho, P., and Sievanen,
U. (2013). “Backfill Production Line 2012,” POSIVA 2012-18, Finland.
[18] Holt, E., Leivo, M., and Vehmas, T. (2014). “Low-pH concrete developed
for tunnel end plugs used in nuclear waste containment,” Concrete
Innovation Conference 2014, June 11-13. Oslo, Norway.
[19] Cau Dit Coumes, C., Codina, M., Bourbon, X., Leclercq, S., and Courtois,
S. (2005). “Formulating a low-alkalinity, high-resistance and low-heat
concrete for radioactive waste repositories,” R&D on Low-pH cement for a
geological repository, second low-pH workshop, Enresa, SKB and the
ESDRED-project. Madrid, June 15-16. pp. 77-90.
[20] Vogt, C., Lagerblad, B., Wallin, K., Baldy, F., and Jonasson, J-E. (2009).
“Low pH self-compacting concrete for deposition tunnel plugs,” SKB
R-09-07, SKB, Stockholm.
[21] Wallevik, O. (2007). Rheology of cement-based materials, material for
DTU-RILEM course, Aug 2007.
[22] Thomas M.D.A, Shehata M.H., Shashiprakash S.G., Hopkins D.S., and
Cail K. (1999). “Use of Ternary Cementitious Systems Containing Silica
Fume and Fly Ash in Concrete,” Cem. Concr. Res., Vol. 29. pp. 1207-1214.
[23] Dahlstrom, L-O. (2009). “Experiences from the design and construction of
plug II in the Prototype Repository,” SKB Rapport R-09-49, SKB,
Stockholm.
[24] Glasser, F.P. (1996). Properties of cement waste composites, Waste
Management, Vol. 16. pp. 159-168.
[25] Kobayashi, Y., Yamada, T., Matsui, H., Nakayama, M., Mihara, M., Naito,
M., and Yui, M. (2007). “Development of low-alkali cement for application
in a JAEA URL,” R&D on Low-pH cement for a geological repository,
third workshop, Enresa, SKB and the ESDRED-project. Paris, June 13-14.
pp. 98-106.
[26] Dunstan, E.R. (1980). “Possible methods of identifying fly ashes that will
improve sulfate resistance,” Cement, Concrete and Aggregates 2. pp.
20-30.
[27] Tikalsky, P.J. and Carrasquillo, R.L. (1992). “Influence of fly ash on the
sulfate resistance of concrete,” ACI Materials J. Vol. 89 (1). pp. 69-75.
[28] Mehta, P.K. (1986). “Effect of fly ash composition on sulphate resistance
of cement,” ACI Materials J. Vol. 83 (6). pp. 994-1000.
[29] Imoto, H., Yamamoto, T., Hironaga, M., and Ueda, H. (2005). “Properties
of low-pH cementitious materials developed and tested by CRIEPI and
NUMO,” R&D on Low-pH cement for a geological repository, second
low-pH workshop, Enresa, SKB and the ESDRED-project. Madrid, June
15-16. pp. 91-96.
[30] SvenskByggtjanstAB. (1994). Betonghandbok Material.
SvenskByggtjanstAB, Sweden, in Swedish.
[31] Berner, U., Kulik, D-A., and Kosakowski, G. (2013). “Geochemical impact
of a low-pH cement liner on the near field of a repository for spent fuel and
high-level radioactive waste,” Physics and Chemistry of the Earth, Vol. 64.
pp. 46-56.
[32] Gaucher, E-C., Blanc, P., Matray, J.-M., and Michau, N. (2004). “Modeling
diffusion of an alkaline plume in a clay barrier,” Appl. Geochem., Vol. 19
(10). pp. 1505-1515.
[33] Mader, U-K., and Traber, D. (2004). “Reactive transport model of cement –
clay stone interaction with application to a HLW repository in Opalinus
Clay,” European Commission. Final Report of the ECOCLAY-II Project,
pp. 285-291.
[34] Soler, J-M., and Mader, U-K. (2005). “Interaction between hyperalkaline
fluids and rocks hosting repositories for radioactive waste: Reactive
transport simulations,” Nucl. Sci. Eng., Vol. 151 (1). pp. 128-133.
[35] Traber, D. & Mader, U. (2008). “Reactive transport modelling of the
diffusive interaction between Opalinus Clay and concrete,” Nagra open file
report NAB 05–06, Nagra, Wettingen, Switzerland (in press).
[36] Zhou, W. and Arthur, R. (2010). “Near-field processes, evolution and
performance assessment in geological repository systems,” Geological
Repository Systems for Safe Disposal of Spent Nuclear Fuels and
Radioactive Waste. U.S.A. pp. 353-378.
[37] Gaboreau, S., Pret, D., Tinseau, E., Claret, F., Pellegrini, D., and Stammose,
D. (2011). “15 years of in situ cement–argillite interaction from
Tournemire URL: Characterisation of the multi-scale spatial
heterogeneities of pore space evolution,” Applied Geochemistry. Vol. 26.
pp. 2159-2171.
[38] Cuevas, J., Vigil de la Villa, R., Ramirez, S., Sanchez, L., Fernandez, R.,
and Leguey, S. (2006). “The alkaline reaction of FEBEX bentonite: a
contribution to the study of the performance of bentonite/concrete
engineered barrier systems,” Journal of Iberian Geology, Vol. 32 (2). pp.
151-174.
[39] Vigil de la Villa, R., Cuevas, J., Ramirez, S., and Leguey, S. (2001).
“Zeolite formation during the alkaline reaction of bentonite,” Eur. J.
Mineral., Vol. 13 (3). pp. 635-644.
[40] Ramirez, S., Righi, D., and Petit, S. (2005). “Alteration of smectites
induced by hydrolytic exchange,” Clay Minerals, Vol. 40 (1). pp. 15-24.
[41] Read, D., Glasser, F-P., Ayora, C., Guardiola, M-T., and Sneyers, A. (2001).
“Mineralogical and microstructural changes accompanying the interaction
of Boom Clay with ordinary Portland cement,” Adv. Cem. Res., Vol. 13 (4).
pp. 175-183.
[42] Ramirez, S., Cuevas, J., Vigil, R., and Leguey, S. (2002). “Hydrothermal
alteration of ‘‘La Serrata’’ bentonite (Almeria, Spain) by alkaline solutions,”
Appl. Clay Sci., Vol. 21. pp. 257-269.
[43] Fernandez, R., Cuevas, J., Sanchez, L., Vigil de la Villa, R., and Leguey, S.
(2006). “Reactivity of the cement-bentonite interface with alkaline
solutions using transport cells,” Appl. Geochem., Vol. 21 (6). pp. 977-992.
[44] Savage, D., Walker, C., Arthur, R., and Rochelle, C. (2007). “Alteration of
bentonite by hyperalkaline fluids: A review of the role of secondary
minerals,” Phys. Chem. Earth, Parts A/B/C, Vol. 32. pp. 287-297.
[45] Lothenbach, B. and Winnefeld, F. (2006). “Thermodynamic modelling of the hydration of Portland cement,” Cem. Concr. Res., Vol. 36. pp. 209-226.
[46] Cuadros, J. and Linares, J. (1995). “Some evidence supporting the
existence of polar layers in mixed-layer illite/smectite,” Clays Clay
Minerals, Vol. 43 (4). pp. 467-473.
[47] Cama, J., Ganor, J., Ayora, C., and Lasaga, C.A. (2000). “Smectite
dissolution kinetics at 80 ℃ and pH 8.8,” Geochim. Cosmochim. Acta,
Vol. 64 (15). pp. 2701-2717.
[48] Sanchez, L., Cuevas, J., Ramirez, S., Ruiz De Leon, D., Fernandez, R.,
Vigil de la Villa, R., Leguey, S. (2006). “Reaction kinetics of FEBEX
bentonite in hyperalkaline conditions resembling the cement-bentonite
interface,” Appl. Clay Sci., Vol. 33 (2). pp. 125-141.
[49] Lasaga, A.C. (1981). “Rate laws of chemical reactions,” Rev. Mineral., Vol.
8, pp. 1-68.
[50] Lasaga, A.C. (1984). “Chemical kinetics of water–rock interactions,” J.
Geophys. Res., B, Vol. 89 (B6). pp. 4009-4025.
[51] Fernandez, A.M., Baeyens, B., Bradbury, M., and Rivas, P. (2004).
“Analysis of the porewater chemical composition of a Spanish compacted
bentonite used in an engineered barrier,” Phys. Chem. Earth, Vol. 29. pp.
105-118.
[52] Baeyens, B., Bradbury, M., Martin, G., Jakobs, A., Van Loon, L., and
Yaroshchuk, A. (2006). “Interrelation between diffusion and sorption in the
transport of cations through highly compacted montmorillonite,” Presented
in 4th Swiss Geoscience Meeting. Bern, Switzerland.
[53] Van Loon, L.R., Glaus, M.A., Muller, W. (2007). “Anion exclusion effects in compacted bentonites: Towards a better understanding of anion
diffusion,” Appl. Geochem., Vol. 22 (11). pp. 2536-2552.
[54] Montes-H, G., Fritz, B., Clement, A., and Michau, N. (2005). “Modeling of
transport and reaction in an engineered barrier for radioactive waste
confinement,” Appl. Clay Sci., Vol. 29 (3-4). pp. 155-171.
[55] Lehikoinen, J., Carlsson, T., Muurinen, A., Olin, M., and Salonen, P. (1996).
“Evaluation of factors affecting diffusion in compacted bentonite,” Mater.
Res. Soc. Symp. Proc., Sci. Basis Nucl. Waste Manage. XIX, Vol. 412. pp.
675-682.
[56] Huertas, F. J., Carretero, P., Delgado, J., Linares, J., and Samper, J. (2001).
“An experimental study on the ion-exchange behavior of the smectite of
Cabo de Gata (Almeria, Spain): FEBEX Bentonite,” J. Colloid Interface
Sci., Vol. 239. pp. 409-416.
[57] Villar, M.V., Perez del Villar, L., Martin, P.L., Pelayo, M., Fernandez, A.M.,
Garralon, A., Cuevas, J., Leguey, S., Caballero, E., Huertas, F.J., Jimenez
de Cisneros, C., Linares, J., Reyes, E., Delgado, A., Fernandez-Soler, J.M.,
and Astudillo, J. (2006). “The study of Spanish clays for their use as
sealing materials in nuclear waste repositories: 20 years of progress,” J.
Iberian Geol., Vol. 32 (1). pp. 15-36.
[58] Behnood, A., Tittelboom, K. V., Belie, N. D. (2016). “Methods for
measuring pH in concrete: A review,” Construction and Building Materials,
Vol. 105. pp. 176-188.
[59] Alonso, M. C., Garcia Calvo, J. L., Walker, C., Naito, M., Pettersson, S.,
Puigdomenech, I., Cunado, M. A., Vuorio, M., Weber, H., Ueda H, and
Fujisaki, K. (2012). “Development of an accurate pH measurement
methodology for the pore fluids of low pH cementitious materials,” SKB
R-12-02, SKB, pp. 11-18, Stockholm.
[60] 用過核子燃料處置安全審驗技術建立之國際資訊研析 子項計畫三:低
鹼性水泥混凝土於最終處置設施之應用研究,《行政院原子能委員會放
射性物料管理局》,2016。
[61] Uomoto, T. and Ozawa, K. (1999). “Standard test methods for
self-compacting concrete,” JSCE, Concrete Engineering Series, Vol. 31. pp.
50-77.
[62] 行政院公共工程委員會 (2013),公共工程施工綱要規範第03315 章「自
充填混凝土」,第5 版,第5 頁。
[63] Xie, P. and Beaudoin, J.J. (1992). “Modification of transition zone
microstructure—silica fume coating of aggregate surfaces,” Cem. Concr.
Res. Vol. 22. pp. 597-604.
[64] Cohen, M.D., Goldman, A., and Chen, W.F. (1994). “The role of silica
fume in mortar—transition zone versus bulk paste modification,” Cem.
Concr. Res. Vol. 24. pp. 95-98.
[65] Kai, W., Huisheng S., Linglin X., Guang Y., and Geert D.S. (2016).
“Microstructural characterization of ITZ in blended cement concretes and
its relation to transport properties,” Cem. Concr. Res. Vol. 79. pp. 243-256.
[66] Jiang, L.H. (1999). “The interfacial zone and bond strength between
aggregates and cement pastes incorporating high volumes of fly ash,” Cem.
Concr. Compos. Vol. 21. pp. 313-316.
[67] Wong, Y.L., Lam, L., Poon, C.S., and Zhou, F.P. (1999). “Properties of fly
ash-modified cement mortar-aggregate interfaces,” Cem. Concr. Res. Vol.
29. pp. 1905-1913.
[68] Wee, T. H., Suryavanshi, A.K., and Tin, S.S. (2000). “Evaluation of rapid
chloride permeability test (RCPT) results for concrete containing mineral
admixture”, ACI Mater. J. Vol. 97 (2). pp. 221-232.
指導教授 黃偉慶 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明