博碩士論文 104621025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.219.185.34
姓名 葉芳利(Fang-Li Yeh)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 全球暖化下季風亞洲降水的變化
(Changes of precipitation in Monsoon Asia under Global Warming)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化
★ MJO對南海颱風活動之影響★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?
★ Changes of the Hadley Cell During the Last Four Decades★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation
★ Changes of Tropical Tropopause in Response to Global Warming★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討
★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming
★ Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study
★ The role of shallow convection in tropical circulation: a simple analytic approach★ Madden-Julian Oscillation的大氣雲–輻射效應在全球暖化下的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 20世紀中期以後是人類溫室效應造成全球暖化最劇烈階段,全球平均地面氣溫在這短短50餘年間增加0.6℃以上。本研究應用1951-2007年間,日本氣象廳氣象研究所和日本綜合地球環境學研究所研發的【亞洲降水高解析度陸地日降雨網格資料】(APHRODITE,V1101)來分析亞洲季風區之降雨量、降雨日、雨跡日及無降水日在全球暖化下的變化。資料分析顯示,沿海地區、海島地區及熱帶地區的年降雨量較豐沛,但可以發現降雨量豐沛的地區,其降雨日天數並不一定也很多,這意味著各地區降雨強度不盡相同。全球暖化可能使得熱帶赤道地區降水強度下降、中國東北部降水量及降水強度皆下降、中國東南部降水強度增加、印度地區降水強度下降。
不同降雨事件發生的頻率在地理分布上的變化顯示,前十年(1951-1960年)與後十年(1998-2007年)絕對變化差異大的事件為強度偏弱的降水事件。也可以知道不論是何種氣候區,整個亞洲季風區主要的降水量變化皆來自非常弱及弱降水事件。以非常弱(0.1~1 mm/day)、弱(1~10 mm/day)、中等(10~25 mm/day)、強(25~50 mm/day)及非常強(大於50 mm/day)降水事件來分析降雨量、降雨日的各種變化,發現九個氣候區中以熱帶雨林氣候區、副熱帶季風氣候區、溫帶海洋氣候區的降雨事件變化情況比較顯著。
受到全球暖化的影響,亞洲季風區中各氣候分區的降水量變化皆呈現下降的趨勢,其中以熱帶雨林氣候區下降最明顯;降水頻率變化主要集中在中、強降水範圍,其中溫帶海洋氣候區的降水頻率在強、非常強降水增加幅度最大,相對變化率可達100-300%。反之熱帶雨林氣候區與溫帶乾燥氣候區的降水頻率相對變化在強、非常強降水強度可下降20-80%。降水強度的相對變化同樣是溫帶海洋氣候區的強降水強度增加最多,而熱帶雨林氣候區的強度是減少最明顯的。因此可以明顯地了解到降水的變化趨勢在各氣候區是非常不均勻的分布,這樣的現象與環境場有著密切的相關性。
在定量分析上,利用水氣收支方程來探討熱帶雨林、副熱帶季風及溫帶海洋氣候區降雨變化的物理機制。熱帶雨林、副熱帶季風及溫帶海洋氣候區主要是由擾動垂直速度的垂直平流項為影響降雨擾動項變化的主要貢獻項,熱帶雨林、副熱帶季風及溫帶海洋氣候區為上升運動減弱而造成降雨的減少。
整體而言,整個亞洲季風區受到全球暖化的影響,降雨的變化在地理位置分佈上非常不均勻,並不完全遵守【濕者愈濕、乾者愈乾】假說。基本上可以發現降雨變化主要是由垂直上升運動增加或減少所控制。至於九個氣候區在各種降雨事件上的變化皆不盡相同,未來可以再使用不同降雨資料來分析暖化氣候對降雨的影響及造成變化的機制。
摘要(英) Since the 2nd half of the 20th century, anthropogenic greenhouse effect has caused the rapidest global warming trend ever in human history. The global-mean surface air temperature increased greater than 0.6℃ in the past fifty years. In this thesis research, we used a high-resolution precipitation reanalysis data, the “Asian Precipitation - Highly - Resolved Observational Data Integration Towards Evaluation” (APHRODITE,V1101) to examine changes of precipitation amount, precipitation days, trace days and dry days in Monsoon Asia over the period from 1951 to 2007. The results showed that precipitation intensity is larger over coastal areas of Asian continent and maritime continent. Precipitation day shows a significant non-homogeneous distribution in Monsoon Asia which also implies the strong non-homogeneity of precipitation intensity. Under global warming, the precipitation intensity tends to weaken in tropical equator, the precipitation amount and precipitation intensity appears to decrease in northeast China, the precipitation intensity tends to strengthen in southeast China, and the precipitation intensity appears to weaken in India.
Examining changes in frequency of five precipitation categories showed that differences in precipitation intensity of very light and light precipitation events are largest over the study period. We also found that, no matter in which climatic zones, the very light and light precipitation events mainly contribute to changes in precipitation amount in Monsoon Asia. We also used five precipitation categories (very light, light, moderate, heavy, and very heavy) to analyze changes of precipitation amount and precipitation days. Only modest changes of precipitation amount were found over the study period in nine climate zones except for the tropical rainforest climate, subtropical monsoon climate, and temperate maritime climate zones.
Under global warming, trends of precipitation amount were all reduced in nine climate zones. Trend of precipitation amount in Tropical rainforest climate was obviously reduced among nine climate zones. Changes in precipitation frequency were found mainly on moderate and heavy precipitation events. the relative change of precipitation frequency increases in temperate maritime climate, with values around 100-300%. Conversely, the relative change of precipitation frequency decreases in Tropical rainforest climate and subtropical monsoon climate, with values around 20-80%. Next, relative changes of precipitation intensity are similar to relative changes of precipitation frequency, i.e., the relative change of intensity largely increases for heavy precipitation among all precipitation events in temperate maritime climate, and largest decrease in tropical rainforest climate. Consequently, it is expected that changes of precipitation trend and the associated non-uniform distribution for all climate regions must be related to environment factors.
For the quantitative analysis, we used the moisture budget equation to explore mechanism responsible for changes of precipitation amount in tropical rainforest climate, subtropical monsoon climate, and temperate maritime climate. The vertical moisture advection due to convection change is the main contribution effect leading to precipitation changes term in the tropical rainforest climate, subtropical monsoon climate, and temperate maritime climate. In other words, anomalous divergence and subsidence lead to reduce rainfall in tropical rainforest climate, subtropical monsoon climate, and temperate maritime climate.
In conclusion, changes of precipitation showed a non-uniform geographical distribution in Monsoon Asia, in general, disobeying the “wet-get-wetter and dry-get-drier” hypothesis. Specifically, changes in precipitation are controlled by changes in convection. As for the nine climate zones, changes of various rainfall events are not always the same in all climate zones. In the future, we will use different data to analyze how global warming impacts precipitation frequency and intensity.
關鍵字(中) ★ 全球暖化
★ 降水強度
★ 降水頻率
★ 水氣收支方程
關鍵字(英) ★ Global warming
★ precipitation intensity
★ precipitation frequency
★ moisture budget equation
論文目次 摘要·····I
ABSTRACT·····III
致謝·····VI
目錄·····VIII
表目錄·····X
圖目錄·····XI
第一章、緒論·····1
1.1研究動機與目的·····1
1.2文獻回顧·····2
第二章、資料來源與研究方法·····5
2.1 資料來源·····5
2.1.1 降水觀測資料·····5
2.1.2 再分析資料·····5
2.2 研究方法·····6
2.2.1氣候分類(Climate classification)·····7
2.2.2降雨強度與百分位法(Percentiles)分析·····8
2.2.3經驗正交函數(Empirical Orthogonal Function, EOF)·····9
2.2.4奇異值分解(Singular Value Decomposition, SVD)·····10
2.2.5降水分類(Precipitation classification)·····11
2.2.6水氣收支方程(moisture budget)·····11
第三章、降雨資料分析·····18
3.1 降雨時空特徵·····18
3.1.1 經驗正交函數(EOF)·····18
3.1.2 奇異值分解(SVD)·····19
3.2降雨氣候特徵·····20
3.2.1年平均地理分布·····20
3.2.2降雨變化趨勢·····24
第四章、氣候區的降雨特徵·····42
4.1 氣候區之降雨量趨勢·····42
4.2降雨事件之百分比·····43
4.3降雨量之絕對/相對變化·····47
4.4頻率之絕對/相對變化·····50
第五章、降雨頻率與強度分析·····63
5.1 降雨頻率(FREQUENCY)·····63
5.2降雨強度(INTENSITY)·····68
第六章、降水變化定量診斷分析·····77
6.1 水氣收支方程分析·····77
6.2水氣收支與各氣候區之討論·····80
第七章、結論與展望·····85
7.1 結論·····85
7.2未來展望·····88
參考文獻·····90
附錄A、各降雨強度之樣本數·····93
附錄B、GPCC年平均降雨分布·····94
參考文獻 Allan, R. P., and B. J. Soden, 2007: Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys. Res. Lett., 34, L18705.
Chen, Y.-C., 2014: Flood - Drought Variability in Monsoon Asia. Master of Science Thesis, Graduate School of Earth Science (Atmospheric Sciences Section) College of Science Chinese Culture University. 1-110.
Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 2688–2701.
Chou, C., J.-Y. Tu, and P.-H. Tan, 2007: Asymmetry of tropical precipitation change under global warming. Geophys. Res. Lett., 34, L17708.
Chou, C., and C.-A. Chen, 2010: Depth of convection and the weakening of tropical circulation in global warming. J. Climate, 23, 3019–3030.
Chou, C., C.-A. Chen, P.-H. Tan, and K.-T. Chen, 2012: Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity. J. Climate, 25, 3291–3306.
Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamicchanges in mean and extreme precipitation under changedclimate. Geophys. Res. Lett., 32, L17706.
Gong, D.-Y., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436.
Gutowski, W.J., G. C. Hegerl, G. J. Holland, T. R. Knutson, L.O. Mearns, et al. 2008: Causes of Observed Changes in Extremes and Projections of Future Changes. In
Weather and Climate Extremes in a Changing Climate, US Climate Change Science Program SAP 3.3, T. Karl et al., Eds. pp 81-116.
IPCC, 2013: Climate Change 2013: The Physical Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J.
Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535pp.
Liu, S. C., C. Fu, C.-J. Shiu, J.-P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702.
Ma, S., Tianjun Z., A. Dai, and Z. Han, 2015: Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013. J.
Climate, 20, 4801–4818.
McAlpine, C. A., J. Alex, S. Alvaro, S. Jozef, W. Kerrie, M. Erik, S. Leonie, D. Paul, N. Haziq, and S. Douglas, 2018: Forest loss and Borneo’s climate. Environ. Res.
Lett. 13, (2018) 044009.
Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 1633–1644.
Stephens, G. L., and T. D. Ellis, 2007: Controls of Global-Mean Precipitation Increases in Global Warming GCM Experiments. J. Climate, 25, 6141–6155.
Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How Often Will It Rain? J. Climate, 20, 4801–4818.
Shiu, C.-J., S. C. Liu, C. Fu, A. Dai, and Y. Sun, 2012: How much doprecipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707.
Trenberth, A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1217.
Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 13, 317, 233–235.
Watterson, I. G., and M. R. Dix, 2003: Simulated changes due toglobal warming in daily precipitation means and extremesand their interpretation using the gamma
distribution. J. Geophys Res., 108, 4379.
Zhu, J., Y. Zhang, and D. Huang, 2009: Analysis of changes in different-class precipitation over eastern China under global warming. Plateau Meteor., 28,
889–896.
Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–465.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2018-5-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明