參考文獻 |
1. 張良正、蔡威平、陳宇文(1999b),「屏東地區地下水補注量推估及分級」,第三屆地下水資源及水質保護研討會,第65-76頁。
2. 徐鐵良(1961),「台灣南部屏東谷地之自升地下水系」,中國地質學會會刊第4號(臺北市: 中國地質學會, 第73-81頁。
3. 徐年盛、江崇榮、汪中和等(2011),「地下水系統水平衡分析與補注源水量推估之研究」,中國土木水利工程學刊,第二十三卷,第四期,第347-257頁。
4. 柯亭芳、丁澈士、吳峰誼(1996),「屏東平原地下水變動立體化模擬及補助量估算之研究」,中國土木水利工程學刊,第二十二卷,第四期,第35-45頁。
5. 吳銘志 (1997),「屏東沖平原內自流井之分佈及其賦存層之地層組構.第二屆地下水資源及水質保護研討會論文集: 第947-954頁。
6. 水利署水文技術組(2016),「屏東平原水文特徵分析與耦合地表地下水數值模擬應用」,水利署電子報,第0189期」。
7. Chen, Zhuoheng, et al. (2002), "Predicting average annual groundwater levels from climatic variables: an empirical model." Journal of Hydrology 260(1-4): 102-117.
8. Custodio, Emilio. (2002), "Aquifer overexploitation: what does it mean?" Hydrogeology Journal 10(2): 254-277.
9. Eckhardt, K and Ulbrich. (2003), "Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range." Journal of Hydrology 284(1-4): 244-252.
10. Foster S.S.D., Chilton J., Moencg M., Cardy F. and Schiffler M. (2000), "Groundwater in rural development." World Bank Technical Paper NO. 463(World Bank, Washington D.C.): 101.
11. Foster, SSD and Chilton, PJ. (2003), "Groundwater: the processes and global significance of aquifer degradation." Philosophical Transactions of the Royal Society B: Biological Sciences 358(1440): 1957-1972.
12. Fried, Jean J. (1975),Groundwater pollution, Elsevier.
13. Gibson, John and Aggarwal, Pradeep. (2001), "REVISITING CLIMATE CHANGES." IAEA BULLETIN 43: 2.
14. IWMI. (2000), "Improving Water and Land Resources Management for Food." IWMI Strategic plan 2000-2005(Livelihoods and Nature): 30.
15. Moncaster, SJ, et al. (2000), "Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate." Journal of Contaminant Hydrology 43(2): 147-163.
16. Pimentel, David, et al. (2004), "Water resources: agricultural and environmental issues." BioScience 54(10): 909-918.
17. Vorosmarty, Charles J, et al. (2000), "Global water resources: vulnerability from climate change and population growth." Science 289(5477): 284-288.
18. Wada, Yoshihide, et al. (2010), "Global depletion of groundwater resources." Geophysical research letters 37(20)
19. Aboufirassi, Mohamed and Marino, Miguel A. (1984), "Cokriging of aquifer transmissivities from field measurements of transmissivity and specific capacity." Journal of the International Association for Mathematical Geology 16(1): 19-35.
20. Ahmed, Shakeel and De Marsily, Ghislain. (1987), "Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity." Water Resources Research 23(9): 1717-1737.
21. Aziz, Abd, et al. (1992), "A neural?network approach to the determination of aquifer parameters." Groundwater 30(2): 164-166.
22. Breiman, Leo. (2001), "Random forests." Machine learning 45(1): 5-32.
23. Coppola, Emery A, et al. (2007), "Multiobjective analysis of a public wellfield using artificial neural networks." Groundwater 45(1): 53-61.
24. Coppola Jr, Emery, et al. (2003), "Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions." Journal of hydrologic Engineering 8(6): 348-360.
25. Cox, ME, et al. (2005), "Water quality condition and trend in North Queensland waterways." Marine Pollution Bulletin 51(1-4): 89-98.
26. Daliakopoulos, Ioannis N, et al. (2005), "Groundwater level forecasting using artificial neural networks." Journal of Hydrology 309(1-4): 229-240.
27. Dominici, Francesca, et al. (2002), "On the use of generalized additive models in time-series studies of air pollution and health." American Journal of Epidemiology 156(3): 193-203.
28. Egeberg, Morten. (2010), "The European Commission." European union politics 3: 125-140.
29. Friedman, Jerome H and Stuetzle, Werner. (1981), "Projection pursuit regression." Journal of the American statistical Association 76(376): 817-823.
30. Fukuoka, A. (1951), "The Central Meteorological Observatory, A study on 10-day forecast (A synthetic report)." Geophysical Magazine 22(3): 177-208.
31. Garcia, Luis A and Shigidi, Abdalla. (2006), "Using neural networks for parameter estimation in ground water." Journal of Hydrology 318(1-4): 215-231.
32. Giannitrapani, Marco, et al. (2005), "Additive models for correlated data with applications to air pollution monitoring." Biometrics
33. Govindaraju, Rao S. (2000), "Artificial neural networks in hydrology. I: Preliminary concepts." Journal of Hydrologic Engineering 5(2): 115-123.
34. Granger, Clive WJ. (1993), "Strategies for Modelling Nonlinear Time?Series Relationships." Economic Record 69(3): 233-238.
35. Hastie, Trevor J and Tibshirani, Robert J. (1990), Generalized additive models, volume 43 of Monographs on Statistics and Applied Probability, Chapman & Hall, London
36. Hastie, Trevor and Tibshirani, Robert. (1995), "Generalized additive models for medical research." Statistical methods in medical research 4(3): 187-196.
37. Hsieh, Shih Hsiung. (1972), "Subsurface Geology And Gravity Anomalies Of The Tainan And Chungchou Structures Of The Coastal Plain Of Southwestern Taiwan." Petroleum Geology of Taiwan 10: 323-338.
38. Hsu, Kuo-Chin, et al. (2007), "Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan." Hydrogeology Journal 15(5): 903-913.
39. Hsu, Kuo?lin, et al. (1995), "Artificial neural network modeling of the rainfall?runoff process." Water Resources Research 31(10): 2517-2530.
40. Hu, Michael Jen-Chao. (1964), Application of the adaline system to weather forecasting, Department of Electrical Engineering, Stanford University
41. Jiongguang, Xie. (1995), "Extended Empirical Orthogonal Function (EEOF) and Applications to Monthly (Seasonal) Rainfall Prediction [J]." Scientia Atmospherica Sinica 4
42. Karamouz, Mohammad, et al. (2007), "Application of genetic algorithms and artificial neural networks in conjunctive use of surface and groundwater resources." Water International 32(1): 163-176.
43. Kholghi, M and Hosseini, SM. (2006), "Estimation of aquifer transmissivity using kriging, artificial neural network, and neuro-fuzzy models." Journal of Spatial Hydrology 6(2)
44. Kohavi, Ron. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai, Montreal, Canada.
45. Letcher, RA, et al. (2001), "Methods for the analysis of trends in streamflow response due to changes in catchment condition." Environmetrics 12(7): 613-630.
46. Lorenz, Edward N. (1956), "Empirical orthogonal functions and statistical weather prediction."
47. Maier, Holger R and Dandy, Graeme C. (1996), "The use of artificial neural networks for the prediction of water quality parameters." Water Resources Research 32(4): 1013-1022.
48. Mascaro, Giuseppe, et al. (2015), "Hyperresolution hydrologic modeling in a regional watershed and its interpretation using empirical orthogonal functions." Advances in water resources 83: 190-206.
49. McCulloch, Warren S and Pitts, Walter. (1943), "A logical calculus of the ideas immanent in nervous activity." The bulletin of mathematical biophysics 5(4): 115-133.
50. McPhee, James and Yeh, William W-G. (2008), "Groundwater management using model reduction via empirical orthogonal functions." Journal of Water Resources Planning and Management 134(2): 161-170.
51. Motaghian, HR and Mohammadi, J. (2011), "Spatial estimation of saturated hydraulic conductivity from terrain attributes using regression, kriging, and artificial neural networks." Pedosphere 21(2): 170-177.
52. Mukhopadhyay, Amitabha. (1999), "Spatial estimation of transmissivity using artificial neural network." Groundwater 37(3): 458-464.
53. Nathan, RJ, et al. (1999). "On the application of generalised additive models to the detection of trends in hydrologic time series data". Water 99: Joint Congress; 25th Hydrology & Water Resources Symposium, 2nd International Conference on Water Resources & Environment Research; Handbook and Proceedings, Institution of Engineers, Australia.
54. Nayak, Purna C, et al. (2006), "Groundwater level forecasting in a shallow aquifer using artificial neural network approach." Water Resources Management 20(1): 77-90.
55. Ramsay, Timothy O, et al. (2003), "The effect of concurvity in generalized additive models linking mortality to ambient particulate matter." Epidemiology 14(1): 18-23.
56. Rogers, Leah L and Dowla, Farid U. (1994), "Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling." Water Resources Research 30(2): 457-481.
57. Rumelhart, David E, et al. (1994), "The basic ideas in neural networks." Communications of the ACM 37(3): 87-92.
58. Sahoo, S, et al. (2017), "Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US." Water Resources Research 53(5): 3878-3895.
59. Sharda, Ramesh. (1994), "Neural networks for the MS/OR analyst: An application bibliography." Interfaces 24(2): 116-130.
60. Shigidi, Abdalla and Garcia, Luis A. (2003), "Parameter estimation in groundwater hydrology using artificial neural networks." Journal of computing in civil engineering 17(4): 281-289.
61. Shiklomanov, Igor A and Rodda, John C. (2004), World water resources at the beginning of the twenty-first century, Cambridge University Press.
62. Sorichetta, Alessandro, et al. (2013), "A Comparison of Data?Driven Groundwater Vulnerability Assessment Methods." Groundwater 51(6): 866-879.
63. Swartzman, Gordon, et al. (1992), "Spatial analysis of Bering Sea groundfish survey data using generalized additive models." Canadian Journal of Fisheries and Aquatic Sciences 49(7): 1366-1378.
64. Vermeulen, PTM, et al. (2004), "Reduced models for linear groundwater flow models using empirical orthogonal functions." Advances in water resources 27(1): 57-69.
65. Weare, Bryan C and Nasstrom, John S. (1982), "Examples of extended empirical orthogonal function analyses." Monthly Weather Review 110(6): 481-485.
66. White, Halbert. (1989), "Learning in artificial neural networks: A statistical perspective." Neural computation 1(4): 425-464.
67. Yu, Hwa-Lung and Chu, Hone-Jay. (2010), "Understanding space–time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan." Journal of Hydrology 381(3-4): 239-247.
68. Yu, Hwa-Lung and Lin, Yuan-Chien. (2015), "Analysis of space–time non-stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods." Journal of Hydrology 525: 585-597.
69. Zhang, Guoqiang, et al. (1998), "Forecasting with artificial neural networks:: The state of the art." International journal of forecasting 14(1): 35-62. |