參考文獻 |
Bender, M. A., Ginis, I., & Kurihara, Y. (1993). Numerical simulations of tropical cyclone?ocean interaction with a high?resolution coupled model. Journal of Geophysical Research: Atmospheres, 98(D12), 23245-23263. https://doi.org/10.1029/93JD02370
Bender, M. A., & Ginis, I. (2000). Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128(4), 917-946. https://doi.org/10.1175/1520-493(2000)128<0917:RCSOHO>2.0.CO;2
Bender, M. A., Marchok, T. P., Sampson, C. R., Knaff, J. A., & Morin, M. J. (2017). Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model. Weather and Forecasting, 32(4), 1491-1508. https://doi.org/10.1175/WAF-D-16-0220.1
Chan, J. C., Duan, Y., & Shay, L. K. (2001). Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. Journal of the Atmospheric Sciences, 58(2), 154-172. https://doi.org/10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
Chan, J. C., Ko, F. M., & Lei, Y. M. (2002). Relationship between potential vorticity tendency and tropical cyclone motion. Journal of the Atmospheric Sciences, 59(8), 1317-1336. https://doi.org/10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2
Chang, S. W., & Madala, R. V. (1980). Numerical simulation of the influence of sea surface temperature on translating tropical cyclones. Journal of the Atmospheric Sciences, 37(12), 2617-2630. https://doi.org/10.1175/1520-0469(1980)037<2617:NSOTIO>2.0.CO;2
Chen, H., & Gopalakrishnan, S. G. (2015). A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. Journal of the Atmospheric Sciences, 72(2), 531-550. https://doi.org/10.1175/JAS-D-14-0097.1
Chen, S., Elsberry, R. L., & Harr, P. A. (2017). Modeling interaction of a tropical cyclone with its cold wake. Journal of the Atmospheric Sciences, 74(12), 3981-4001. https://doi.org/10.1175/JAS-D-16-0246.1
Chien, F. C., & Kuo, H. C. (2011). On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research: Atmospheres, 116(D5). https://doi.org/10.1029/2010JD015092.
Ching, L., Sui, C. H., Yang, M. J., & Lin, P. L. (2015). A modeling study on the effects of MJO and equatorial Rossby waves on tropical cyclone genesis over the western North Pacific in June 2004. Dynamics of Atmospheres and Oceans, 72, 70-87. https://doi.org/10.1016/j.dynatmoce.2015.10.002
Choi, Y., Yun, K. S., Ha, K. J., Kim, K. Y., Yoon, S. J., & Chan, J. C. (2013). Effects of asymmetric SST distribution on straight-moving Typhoon Ewiniar (2006) and recurving Typhoon Maemi (2003). Monthly Weather Review, 141(11), 3950-3967. https://doi.org/10.1175/MWR-D-12-00207.1
Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., DeMaria, M., et al. (2008). Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6), 1990-2005. https://doi.org/10.1175/2007MWR2085.1
Gopalakrishnan, S. G., Marks Jr, F., Zhang, J. A., Zhang, X., Bao, J. W., & Tallapragada, V. (2013). A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. Journal of the Atmospheric Sciences, 70(2), 524-541. https://doi.org/10.1175/JAS-D-11-0340.1
Hsu, L. H., Kuo, H. C., & Fovell, R. G. (2013). On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. Journal of the Atmospheric Sciences, 70(4), 1006-1022. https://doi.org/10.1175/JAS-D-12-0173.1
Hsu, L. H., Su, S. H., Fovell, R. G., & Kuo, H. C. (2018). On Typhoon Track Deflections near the East Coast of Taiwan. Monthly Weather Review, 146(5), 1495-1510. https://doi.org/10.1175/MWR-D-17-0208.1
Huang, C. Y., Chen, C. A., Chen, S. H., & Nolan, D. S. (2016). On the upstream track deflection of tropical cyclones past a mountain range: Idealized experiments. Journal of the Atmospheric Sciences, 73(8), 3157-3180. https://doi.org/10.1175/JAS-D-15-0218.1
Huang, C. Y., Wu, I., & Feng, L. (2016). A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. Journal of Geophysical Research: Atmospheres, 121(21). https://doi.org/10.1002/2016JD025589
Huang, C. Y., Zhang, Y., Skamarock, W. C., & Hsu, L. F. (2017). Influences of large-scale flow variations on the track evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a global variable-resolution model. Monthly Weather Review, 145, 1691-1716. https://doi.org/10.1175/MWR-D-16-0363.1
Huang, Y. H., Wu, C. C., & Wang, Y. (2011). The influence of island topography on typhoon track deflection. Monthly Weather Review, 139(6), 1708-1727. https://doi.org/10.1175/2011MWR3560.1
Katsube, K., & Inatsu, M. (2016). Response of tropical cyclone tracks to sea surface temperature in the western North Pacific. Journal of Climate, 29(5), 1955-1975. https://doi.org/10.1175/JCLI-D-15-0198.1
Lee, C. Y., & Chen, S. S. (2012). Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. Journal of the Atmospheric Sciences, 69(12), 3576-3594. https://doi.org/10.1175/JAS-D-12-046.1
Lee, C. Y., & Chen, S. S. (2014). Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Monthly Weather Review, 142(5), 1927-1944. https://doi.org/10.1175/MWR-D-13-00122.1
Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., & Pun, I. F. (2005). The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133(9), 2635-2649. https://doi.org/10.1175/MWR3005.1
Lin, Y. L., Han, J., Hamilton, D. W., & Huang, C. Y. (1999). Orographic influence on a drifting cyclone. Journal of the Atmospheric Sciences, 56(4), 534-562. https://doi.org/10.1175/1520-0469(1999)056,0534:OIOADC.2.0.CO;2
Lin, Y. L., Chen, S.Y., Hill, C. M., & Huang, C. Y. (2005). Control parameters for track continuity and deflection associated with tropical cyclones over a mesoscale mountain. Journal of the Atmospheric Sciences, 62, 1849-1866. https://doi.org/10.1175/JAS3439.1
Ma, Z., Fei, J., Liu, L., Huang, X., & Li, Y. (2017). An Investigation of the Influences of Mesoscale Ocean Eddies on Tropical Cyclone Intensities. Monthly Weather Review, 145(4), 1181-1201. https://doi.org/10.1175/MWR-D-16-0253.1
Mandal, M., Mohanty, U. C., Sinha, P., & Ali, M. M. (2007). Impact of sea surface temperature in modulating movement and intensity of tropical cyclones. Natural Hazards, 41(3), 413-427. https://doi.org/10.1007/s11069-006-9051-8
Marchok, T. P. (2002, April). How the NCEP tropical cyclone tracker works. In Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc. P (Vol. 1).
Miyamoto, Y., & Takemi, T. (2010). An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmospheric Science Letters, 11(4), 278-282. https://doi.org/10.1002/asl.292
Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2), 153-175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
Srinivas, C. V., Mohan, G. M., Naidu, C. V., Baskaran, R., & Venkatraman, B. (2016). Impact of air?sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3?D ocean model coupled to ARW. Journal of Geophysical Research: Atmospheres, 121(16), 9400-9421. https://doi.org/10.1002/2015JD024431
Sun, J., & Oey, L. Y. (2015). The influence of the ocean on Typhoon Nuri (2008). Monthly Weather Review, 143(11), 4493-4513. https://doi.org/10.1175/MWR-D-15-0029.1
Sun, J., Oey, L. Y., Chang, R., Xu, F., & Huang, S. M. (2015). Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea. Ocean Dynamics, 65(5), 735-749. https://doi.org/10.1007/s10236-015-0823-0
Tallapragada, V., Bernardet, L., Biswas, M. K., Ginis, I., Kwon, Y., Liu, Q., et al. (2015). Hurricane Weather Research and Forecasting (HWRF) Model: 2015 Scientific
Documentation, NCAR/TN-522+STR. http://dx.doi.org/10.5065/D6ZP44B5
Tang, C. K., & Chan, J. C. (2016). Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with different sizes. Quarterly Journal of the Royal Meteorological Society, 142(695), 793-804. https://doi.org/10.1002/qj.2681
Trahan, S., & Sparling, L. (2012). An analysis of NCEP tropical cyclone vitals and potential effects on forecasting models. Weather and Forecasting, 27(3), 744-756. https://doi.org/10.1175/WAF-D-11-00063.1
Walker, N. D., Leben, R. R., Pilley, C. T., Shannon, M., Herndon, D. C., Pun, I. F., et al. (2014). Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophysical Research Letters, 41(21), 7595-7601. https://doi.org/10.1002/2014GL061584
Wang, C. C., Kuo, H. C., Chen, Y. H., Huang, H. L., Chung, C. H., & Tsuboki, K. (2012). Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. Journal of the Atmospheric Sciences, 69(11), 3172-3196. https://doi.org/10.1175/JAS-D-11-0346.1
Wang, C. C., Chen, Y. H., Kuo, H. C., & Huang, S. Y. (2013). Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). Journal of Geophysical Research: Atmospheres, 118(8), 3292-3308. https://doi.org/10.1002/jgrd.50351
Wong, M. L., & Chan, J. C. (2006). Tropical cyclone motion in response to land surface friction. Journal of the Atmospheric Sciences, 63(4), 1324-1337. https://doi.org/10.1175/JAS3683.1
Wu, C. C., Lee, C. Y., & Lin, I. I. (2007). The effect of the ocean eddy on tropical cyclone intensity. Journal of the Atmospheric Sciences, 64(10), 3562-3578. https://doi.org/10.1175/JAS4051.1
Wu, C. C., Cheung, K. K., Chen, J. H., & Chang, C. C. (2010). The impact of Tropical Storm Paul (1999) on the motion and rainfall associated with Tropical Storm Rachel (1999) near Taiwan. Monthly Weather Review, 138(5), 1635-1650. https://doi.org/10.1175/2009MWR3021.1
Wu, C. C., Li, T. H., & Huang, Y. H. (2015). Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. Journal of the Atmospheric Sciences, 72(8), 3032-3050. https://doi.org/10.1175/JAS-D-14-0168.1
Wu, C. C., Tu, W. T., Pun, I. F., Lin, I. I., & Peng, M. S. (2016). Tropical cyclone?ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere?ocean coupled model simulations. Journal of Geophysical Research: Atmospheres, 121(1), 153-167. https://doi.org/10.1002/2015JD024198
Wu, L., Zong, H., & Liang, J. (2011). Observational analysis of sudden tropical cyclone track changes in the vicinity of the East China Sea. Journal of the Atmospheric Sciences, 68(12), 3012-3031. https://doi.org/10.1175/2010JAS3559.1
Wu, L., Liang, J., & Wu, C. C. (2011). Monsoonal influence on Typhoon Morakot (2009). Part I: observational analysis. Journal of the Atmospheric Sciences, 68(10), 2208-2221. https://doi.org/10.1175/2011JAS3730.1
Wu, L., & Wang, B. (2000). A potential vorticity tendency diagnostic approach for tropical cyclone motion. Monthly Weather Review, 128(6), 1899-1911. https://doi.org/10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2
Wu, L., & Wang, B. (2001). Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. Journal of the Atmospheric Sciences, 58(23), 3639-3649. https://doi.org/10.1175/1520-0469(2001)058<3639:EOCHOM>2.0.CO;2
Wu, L., Wang, B., & Braun, S. A. (2005). Impacts of air–sea interaction on tropical cyclone track and intensity. Monthly Weather Review, 133(11), 3299-3314. https://doi.org/10.1175/MWR3030.1
Yablonsky, R. M., Ginis, I., Thomas, B., Tallapragada, V., Sheinin, D., & Bernardet, L. (2015). Description and analysis of the ocean component of NOAA’s Operational Hurricane Weather Research and Forecasting Model (HWRF). Journal of Atmospheric and Oceanic Technology, 32(1), 144-163. https://doi.org/10.1175/JTECH-D-14-00063.1
Yu, H., Huang, W., Duan, Y. H., Chan, J. C. L., Chen, P. Y., & Yu, R. L. (2007). A simulation study on pre-landfall erratic track of typhoon Haitang (2005). Meteorology and Atmospheric Physics, 97(1-4), 189-206. https://doi.org/10.1007/s00703-006-0252-1
Yun, K. S., Chan, J. C., & Ha, K. J. (2012). Effects of SST magnitude and gradient on typhoon tracks around East Asia: A case study for Typhoon Maemi (2003). Atmospheric Research, 109, 36-51. https://doi.org/10.1016/j.atmosres.2012.02.012
Zagrodnik, J. P., & Jiang, H. (2014). Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. Journal of the Atmospheric Sciences, 71(8), 2789-2809. https://doi.org/10.1175/JAS-D-13-0314.1
Zhang, Z., Trahan, S., Tong, M., Liu, Q., Wang, W., Zhu, L., et al. (2015, November). HWRF Performance Verification in 2015. Presented at HFIP Annual Review Meeting. Miami, FL |