博碩士論文 105621601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.21.248.59
姓名 李典宜(Dian-Yi Li)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 臺灣周邊地形效應對西行颱風路徑與強度變化的影響: 海氣耦合模式之數值研究
(The Impacts of Topographic Effects in the Vicinity of Taiwan on Track and Intensity Changes of Westbound Typhoons: A Numerical Study Using Atmosphere-Ocean Coupled Model)
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ GPS掩星觀測資料同化及對區域天氣預報模擬之影響★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究
★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響★ 資料同化對台灣地區颱風和梅雨模擬之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 包括陸地地形與海洋在內的地形效應對熱帶氣旋的強度和路徑變化有重要的影響。本文使用Hurricane Weather Research and Forecast (HWRF) 模式對西行颱風位於海上及登陸前的路徑與強度變化展開探討。分別分析了在海洋與臺灣地形影響下的梅姬颱風(2016)路徑變化機制與海洋熱力條件對蘇迪勒颱風(2015)之強度與結構的影響。
梅姬颱風(2016)向西北方移動並登陸臺灣,其路徑在登陸前向南偏折。由於颱風路徑附近相對較低的海表面溫度,相較於使用Global Forecast System (GFS) 海表面溫度資料,使用更真實的Hybrid Coordinate Ocean Model (HYCOM) 海表面溫度分析場可以改善較觀測偏北的颱風路徑模擬。相對偏暖的GFS海表面溫度則導致向北的路徑誤差以及颱風強度的高估。當大氣模式與Princeton Ocean Model 耦合,南海海表面溫度增暖導致路徑北偏,而颱風-海洋交互作用所導致的颱風附近上層海洋降溫則引起颱風路徑南偏。無論路徑偏差如何,颱風路徑在登陸前都呈現南折的現象,這主要是由中央山脈的地形效應所導致的。狹管效應導致颱風中心西側的偏北風增強,從而使路徑向南偏折。位渦趨勢診斷顯示,颱風路徑南折主要是由於登陸前指向東南方的位渦潛熱加熱趨勢。當颱風更接近臺灣時,潛熱加熱作用與氣旋式旋轉的波數一不對稱位渦垂直平流共同導致颱風路徑向南偏折。此外,中央山脈北部的波數一不對稱潛熱加熱垂直梯度呈負值,對登陸前的颱風移動有減速作用。
蘇迪勒颱風(2015)穿過多個海洋中尺度渦旋,這些渦旋的存在可以影響颱風導致的海表面降溫強度與結構。由於更真實的海表面溫度與海洋渦旋等海洋條件,在耦合模式中使用HYCOM海洋分析場可以改善蘇迪勒颱風的強度模擬。颱風路徑附近更真實的海洋冷渦使模式中對颱風快速減弱的模擬得到改善。另一方面,颱風登陸前的再增強則是由於海洋暖渦的存在抑制了颱風導致的海表面降溫。當颱風穿過海洋冷渦,在海-氣耦合試驗中由於更強的颱風冷尾跡區上層海洋降溫,接近海面的大氣虛位溫量值與熱力學颱風邊界層厚度在颱風移動方向的右後象限明顯減少,而颱風流場的內流角則在該區域增大。此外,颱風移動方向右側的內流層厚度在眼牆附近有所增大,這一結構變化可能對颱風強度有積極的影響。海洋冷渦區更強的海表面降溫引起的颱風結構變化之影響予待進一步研究。
摘要(英) Topographic effects play an important role in the track and intensity changes of Tropical Cyclones. In this study, the Hurricane Weather Research and Forecast system (HWRF) was used to investigate the mechanism of the track and intensity changes over free ocean and track deflection near landfall. The influences of ocean SST and Taiwan terrain on track changes of Typhoon Megi (2016) and the influences of ocean thermal conditions on intensity and structure of Typhoon Soudelor (2015) are discussed respectively.
Typhoon Megi (2016) headed northwestward toward Taiwan with southward deflection near landfall. HWRF simulations using more realistic Hybrid Coordinate Ocean Model (HYCOM) sea surface temperature (SST) analysis improve the northward-biased track compared with that using Global Forecast System (GFS) SST, due to the initial cooler SST below the storm path. The initial warmer GFS SST leads to a northward track shifting with an over-intensified typhoon. As the Princeton Ocean Model is coupled, the SST over South China Sea (SCS) becomes warmer leading to a northward track shifting compared to a southward shifting induced by the upper ocean cooling due to the typhoon-ocean interactions in the vicinity of the typhoon. Regardless of track shifting, southward deflection near landfall is mainly controlled by orographic effects of the Central Mountain Range (CMR). Cyclonic northerly is enhanced to the west of the typhoon center due to flow channeling that results in southward deflection. Diagnostics of potential vorticity (PV) tendency budget indicates that southward deflection can be explained by the southeastward tendency of latent heating effects near landfall. The combined effects of latent heating and cyclonic rotation of positive wavenumer-1 (WN-1) PV vertical advection dominate the southward deflection when the typhoon is closer to Taiwan. Furthermore, the typhoon movement near landfall is slowed down mainly due to WN-1 negative vertical differential latent heating over the northern CMR.
Typhoon Soudelor (2015) passes serval sizeable preexisting ocean mesoscale eddies which can influences the intensity of typhoon-induced SST cooling. We investigate the typhoon intensity and structure when typhoon translates over different ocean thermal structures. Coupled to HYCOM analysis data can improve intensity simulation due to the more realistic ocean conditions including SST and ocean eddies. The existence of more realistic cold core eddies (CCE) below the typhoon path improves the simulation of rapid weakening of typhoon at the earlier stage. On the other hand, the re-intensification of typhoon at later times prior to landfall can be attributed to the preexisting warm core eddies which restrain the typhoon-induced upper ocean cooling. When typhoon moves over the CCE, the virtual potential temperature near the surface and the depth of thermodynamic typhoon boundary layer at the rear-right quadrant of typhoon translation is largely decreased in the coupled experiment due to the strong cold wake, while the inflow angle is enhanced at this region. Besides, the depth of inflow layer is larger near eyewall at the right-hand side of typhoon moving direction in coupled experiments which may be favorable to the intensification of typhoon. The effects of these structure changes induced by strong SST cooling over ocean eddies are worthy of further study.
關鍵字(中) ★ 地形效應
★ 海氣交互作用
★ 颱風
關鍵字(英) ★ Topographic Effects
★ Air-sea Interaction
★ Typhoon
論文目次 摘要 i
Abstract ii
致謝 iv
Table of Contents vi
List of Tables viii
List of Figures ix
Notation Illustration xiv
Chapter 1. Introduction 1
Chapter 2. The Influences of Topography on Track of Typhoon Megi (2016) past Taiwan 4
2.1. Model and Experiments 4
2.1.1. Model Settings 4
2.1.2. Typhoon Megi 5
2.1.3. Numerical Experiments 6
2.2. Model Results and Sensitivity Tests 7
2.2.1. Track, Intensity and Ocean Conditions 7
2.2.2. Sensitivity Experiments for SST Wakes and CMR 9
2.3. Influences of Topography on Typhoon Track 10
2.3.1. Ocean Wake Effects 10
2.3.2. Channeling Flow and PV Structure 11
2.3.3. Simulated Precipitation and Latent Heating 12
2.4. Mechanism of Track Changes: Diagnostics of PV Tendency Budget 14
2.4.1. Formulations of PV Tendency Budget 14
2.4.2. Typhoon Translation 15
2.4.3. Structure of Asymmetric PV Tendency Budget 16
2.4.4. Sensitivity of Regressed Translation to Average Layer 17
2.4.5. Effects of Taiwan Terrain 18
2.4.6. Effects of Latent Heating 18
2.5. Discussions on Model Uncertainties 20
2.5.1. Sensitivity to Taiwan Terrain 20
2.5.2. Sensitivity to Physics Schemes 20
2.5.3. Sensitivity to Initial Time, Vortex and Perturbations 22
Chapter 3. The Influences of Ocean Eddies on Intensity and Structure of Typhoon Soudelor (2015) 24
3.1. Experiments and Results 24
3.1.1. Typhoon Soudelor 24
3.1.2. Numerical Experiments 24
3.1.3. Track and Intensity 25
3.2. Effects of Ocean Eddies 26
3.2.1. Ocean Conditions 26
3.2.2. Typhoon boundary layer 27
3.3. Sensitivity to Microphysics Schemes 29
Chapter 4. Conclusions 30
References 34
Tables 41
Figures 43
Appendix 76
?
參考文獻 Bender, M. A., Ginis, I., & Kurihara, Y. (1993). Numerical simulations of tropical cyclone?ocean interaction with a high?resolution coupled model. Journal of Geophysical Research: Atmospheres, 98(D12), 23245-23263. https://doi.org/10.1029/93JD02370
Bender, M. A., & Ginis, I. (2000). Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128(4), 917-946. https://doi.org/10.1175/1520-493(2000)128<0917:RCSOHO>2.0.CO;2
Bender, M. A., Marchok, T. P., Sampson, C. R., Knaff, J. A., & Morin, M. J. (2017). Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model. Weather and Forecasting, 32(4), 1491-1508. https://doi.org/10.1175/WAF-D-16-0220.1
Chan, J. C., Duan, Y., & Shay, L. K. (2001). Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. Journal of the Atmospheric Sciences, 58(2), 154-172. https://doi.org/10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
Chan, J. C., Ko, F. M., & Lei, Y. M. (2002). Relationship between potential vorticity tendency and tropical cyclone motion. Journal of the Atmospheric Sciences, 59(8), 1317-1336. https://doi.org/10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2
Chang, S. W., & Madala, R. V. (1980). Numerical simulation of the influence of sea surface temperature on translating tropical cyclones. Journal of the Atmospheric Sciences, 37(12), 2617-2630. https://doi.org/10.1175/1520-0469(1980)037<2617:NSOTIO>2.0.CO;2
Chen, H., & Gopalakrishnan, S. G. (2015). A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. Journal of the Atmospheric Sciences, 72(2), 531-550. https://doi.org/10.1175/JAS-D-14-0097.1
Chen, S., Elsberry, R. L., & Harr, P. A. (2017). Modeling interaction of a tropical cyclone with its cold wake. Journal of the Atmospheric Sciences, 74(12), 3981-4001. https://doi.org/10.1175/JAS-D-16-0246.1
Chien, F. C., & Kuo, H. C. (2011). On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research: Atmospheres, 116(D5). https://doi.org/10.1029/2010JD015092.
Ching, L., Sui, C. H., Yang, M. J., & Lin, P. L. (2015). A modeling study on the effects of MJO and equatorial Rossby waves on tropical cyclone genesis over the western North Pacific in June 2004. Dynamics of Atmospheres and Oceans, 72, 70-87. https://doi.org/10.1016/j.dynatmoce.2015.10.002
Choi, Y., Yun, K. S., Ha, K. J., Kim, K. Y., Yoon, S. J., & Chan, J. C. (2013). Effects of asymmetric SST distribution on straight-moving Typhoon Ewiniar (2006) and recurving Typhoon Maemi (2003). Monthly Weather Review, 141(11), 3950-3967. https://doi.org/10.1175/MWR-D-12-00207.1
Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., DeMaria, M., et al. (2008). Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6), 1990-2005. https://doi.org/10.1175/2007MWR2085.1
Gopalakrishnan, S. G., Marks Jr, F., Zhang, J. A., Zhang, X., Bao, J. W., & Tallapragada, V. (2013). A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. Journal of the Atmospheric Sciences, 70(2), 524-541. https://doi.org/10.1175/JAS-D-11-0340.1
Hsu, L. H., Kuo, H. C., & Fovell, R. G. (2013). On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. Journal of the Atmospheric Sciences, 70(4), 1006-1022. https://doi.org/10.1175/JAS-D-12-0173.1
Hsu, L. H., Su, S. H., Fovell, R. G., & Kuo, H. C. (2018). On Typhoon Track Deflections near the East Coast of Taiwan. Monthly Weather Review, 146(5), 1495-1510. https://doi.org/10.1175/MWR-D-17-0208.1
Huang, C. Y., Chen, C. A., Chen, S. H., & Nolan, D. S. (2016). On the upstream track deflection of tropical cyclones past a mountain range: Idealized experiments. Journal of the Atmospheric Sciences, 73(8), 3157-3180. https://doi.org/10.1175/JAS-D-15-0218.1
Huang, C. Y., Wu, I., & Feng, L. (2016). A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. Journal of Geophysical Research: Atmospheres, 121(21). https://doi.org/10.1002/2016JD025589
Huang, C. Y., Zhang, Y., Skamarock, W. C., & Hsu, L. F. (2017). Influences of large-scale flow variations on the track evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a global variable-resolution model. Monthly Weather Review, 145, 1691-1716. https://doi.org/10.1175/MWR-D-16-0363.1
Huang, Y. H., Wu, C. C., & Wang, Y. (2011). The influence of island topography on typhoon track deflection. Monthly Weather Review, 139(6), 1708-1727. https://doi.org/10.1175/2011MWR3560.1
Katsube, K., & Inatsu, M. (2016). Response of tropical cyclone tracks to sea surface temperature in the western North Pacific. Journal of Climate, 29(5), 1955-1975. https://doi.org/10.1175/JCLI-D-15-0198.1
Lee, C. Y., & Chen, S. S. (2012). Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. Journal of the Atmospheric Sciences, 69(12), 3576-3594. https://doi.org/10.1175/JAS-D-12-046.1
Lee, C. Y., & Chen, S. S. (2014). Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Monthly Weather Review, 142(5), 1927-1944. https://doi.org/10.1175/MWR-D-13-00122.1
Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., & Pun, I. F. (2005). The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133(9), 2635-2649. https://doi.org/10.1175/MWR3005.1
Lin, Y. L., Han, J., Hamilton, D. W., & Huang, C. Y. (1999). Orographic influence on a drifting cyclone. Journal of the Atmospheric Sciences, 56(4), 534-562. https://doi.org/10.1175/1520-0469(1999)056,0534:OIOADC.2.0.CO;2
Lin, Y. L., Chen, S.Y., Hill, C. M., & Huang, C. Y. (2005). Control parameters for track continuity and deflection associated with tropical cyclones over a mesoscale mountain. Journal of the Atmospheric Sciences, 62, 1849-1866. https://doi.org/10.1175/JAS3439.1
Ma, Z., Fei, J., Liu, L., Huang, X., & Li, Y. (2017). An Investigation of the Influences of Mesoscale Ocean Eddies on Tropical Cyclone Intensities. Monthly Weather Review, 145(4), 1181-1201. https://doi.org/10.1175/MWR-D-16-0253.1
Mandal, M., Mohanty, U. C., Sinha, P., & Ali, M. M. (2007). Impact of sea surface temperature in modulating movement and intensity of tropical cyclones. Natural Hazards, 41(3), 413-427. https://doi.org/10.1007/s11069-006-9051-8
Marchok, T. P. (2002, April). How the NCEP tropical cyclone tracker works. In Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc. P (Vol. 1).
Miyamoto, Y., & Takemi, T. (2010). An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmospheric Science Letters, 11(4), 278-282. https://doi.org/10.1002/asl.292
Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2), 153-175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
Srinivas, C. V., Mohan, G. M., Naidu, C. V., Baskaran, R., & Venkatraman, B. (2016). Impact of air?sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3?D ocean model coupled to ARW. Journal of Geophysical Research: Atmospheres, 121(16), 9400-9421. https://doi.org/10.1002/2015JD024431
Sun, J., & Oey, L. Y. (2015). The influence of the ocean on Typhoon Nuri (2008). Monthly Weather Review, 143(11), 4493-4513. https://doi.org/10.1175/MWR-D-15-0029.1
Sun, J., Oey, L. Y., Chang, R., Xu, F., & Huang, S. M. (2015). Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea. Ocean Dynamics, 65(5), 735-749. https://doi.org/10.1007/s10236-015-0823-0
Tallapragada, V., Bernardet, L., Biswas, M. K., Ginis, I., Kwon, Y., Liu, Q., et al. (2015). Hurricane Weather Research and Forecasting (HWRF) Model: 2015 Scientific
Documentation, NCAR/TN-522+STR. http://dx.doi.org/10.5065/D6ZP44B5
Tang, C. K., & Chan, J. C. (2016). Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with different sizes. Quarterly Journal of the Royal Meteorological Society, 142(695), 793-804. https://doi.org/10.1002/qj.2681
Trahan, S., & Sparling, L. (2012). An analysis of NCEP tropical cyclone vitals and potential effects on forecasting models. Weather and Forecasting, 27(3), 744-756. https://doi.org/10.1175/WAF-D-11-00063.1
Walker, N. D., Leben, R. R., Pilley, C. T., Shannon, M., Herndon, D. C., Pun, I. F., et al. (2014). Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophysical Research Letters, 41(21), 7595-7601. https://doi.org/10.1002/2014GL061584
Wang, C. C., Kuo, H. C., Chen, Y. H., Huang, H. L., Chung, C. H., & Tsuboki, K. (2012). Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. Journal of the Atmospheric Sciences, 69(11), 3172-3196. https://doi.org/10.1175/JAS-D-11-0346.1
Wang, C. C., Chen, Y. H., Kuo, H. C., & Huang, S. Y. (2013). Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). Journal of Geophysical Research: Atmospheres, 118(8), 3292-3308. https://doi.org/10.1002/jgrd.50351
Wong, M. L., & Chan, J. C. (2006). Tropical cyclone motion in response to land surface friction. Journal of the Atmospheric Sciences, 63(4), 1324-1337. https://doi.org/10.1175/JAS3683.1
Wu, C. C., Lee, C. Y., & Lin, I. I. (2007). The effect of the ocean eddy on tropical cyclone intensity. Journal of the Atmospheric Sciences, 64(10), 3562-3578. https://doi.org/10.1175/JAS4051.1
Wu, C. C., Cheung, K. K., Chen, J. H., & Chang, C. C. (2010). The impact of Tropical Storm Paul (1999) on the motion and rainfall associated with Tropical Storm Rachel (1999) near Taiwan. Monthly Weather Review, 138(5), 1635-1650. https://doi.org/10.1175/2009MWR3021.1
Wu, C. C., Li, T. H., & Huang, Y. H. (2015). Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. Journal of the Atmospheric Sciences, 72(8), 3032-3050. https://doi.org/10.1175/JAS-D-14-0168.1
Wu, C. C., Tu, W. T., Pun, I. F., Lin, I. I., & Peng, M. S. (2016). Tropical cyclone?ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere?ocean coupled model simulations. Journal of Geophysical Research: Atmospheres, 121(1), 153-167. https://doi.org/10.1002/2015JD024198
Wu, L., Zong, H., & Liang, J. (2011). Observational analysis of sudden tropical cyclone track changes in the vicinity of the East China Sea. Journal of the Atmospheric Sciences, 68(12), 3012-3031. https://doi.org/10.1175/2010JAS3559.1
Wu, L., Liang, J., & Wu, C. C. (2011). Monsoonal influence on Typhoon Morakot (2009). Part I: observational analysis. Journal of the Atmospheric Sciences, 68(10), 2208-2221. https://doi.org/10.1175/2011JAS3730.1
Wu, L., & Wang, B. (2000). A potential vorticity tendency diagnostic approach for tropical cyclone motion. Monthly Weather Review, 128(6), 1899-1911. https://doi.org/10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2
Wu, L., & Wang, B. (2001). Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. Journal of the Atmospheric Sciences, 58(23), 3639-3649. https://doi.org/10.1175/1520-0469(2001)058<3639:EOCHOM>2.0.CO;2
Wu, L., Wang, B., & Braun, S. A. (2005). Impacts of air–sea interaction on tropical cyclone track and intensity. Monthly Weather Review, 133(11), 3299-3314. https://doi.org/10.1175/MWR3030.1
Yablonsky, R. M., Ginis, I., Thomas, B., Tallapragada, V., Sheinin, D., & Bernardet, L. (2015). Description and analysis of the ocean component of NOAA’s Operational Hurricane Weather Research and Forecasting Model (HWRF). Journal of Atmospheric and Oceanic Technology, 32(1), 144-163. https://doi.org/10.1175/JTECH-D-14-00063.1
Yu, H., Huang, W., Duan, Y. H., Chan, J. C. L., Chen, P. Y., & Yu, R. L. (2007). A simulation study on pre-landfall erratic track of typhoon Haitang (2005). Meteorology and Atmospheric Physics, 97(1-4), 189-206. https://doi.org/10.1007/s00703-006-0252-1
Yun, K. S., Chan, J. C., & Ha, K. J. (2012). Effects of SST magnitude and gradient on typhoon tracks around East Asia: A case study for Typhoon Maemi (2003). Atmospheric Research, 109, 36-51. https://doi.org/10.1016/j.atmosres.2012.02.012
Zagrodnik, J. P., & Jiang, H. (2014). Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. Journal of the Atmospheric Sciences, 71(8), 2789-2809. https://doi.org/10.1175/JAS-D-13-0314.1
Zhang, Z., Trahan, S., Tong, M., Liu, Q., Wang, W., Zhu, L., et al. (2015, November). HWRF Performance Verification in 2015. Presented at HFIP Annual Review Meeting. Miami, FL
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2018-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明