博碩士論文 105621006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:18.227.49.73
姓名 盧可昕(Ke-Xin Lu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用雙偏極化雷達及雨滴譜儀觀測資料分析2008年西南氣流實驗期間強降雨事件的雲物理過程
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ 同化都卜勒雷達資料改善模式預報之研究★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究
★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報★ 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析
★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雲物理過程為水象粒子在空氣中的變化,然而並沒有直接的觀測能量測到雲物理過程,因此要以觀測的角度來了解雲物理過程是一個具挑戰性的課題。然而2008年西南氣流實驗擁有足夠的觀測資料(美國National Center for Atmospheric Research S-band Polarimetric radar system, NCAR S-POL雷達及11部雨滴譜儀Disdrometer ),可以透過這些觀測資料來了解雲物理過程。
本研究首先利用雙偏極化雷達資料的垂直統計特性,分析西南氣流實驗中七個強降雨個案(5/26, 6/2, 6/4, 6/5, 6/13, 6/14, 6/16)的雲物理特徵,再進一步根據地面DSD (drop size distribution)的結果,透過雙偏極化雷達資料的垂直特性,找到不同地面DSD所對應的上方雲物理過程差異。從七個個案的分析結果發現有明顯的兩個群組特徵,(1) 5/26及6/13為深對流獨立降水系統其垂直發展較高、地面有較大的雨滴、明顯的碰撞結合過程及高層較多的軟雹,但卻有較低的液態水含量,(2) 6/5及6/16為有組織性的中尺度對流系統(mesoscale convective system)從南中國海向北移入台灣,其垂直發展較低、地面有較小的雨滴、碰撞結合過程較不明顯,卻有較高的液態水含量。
第二部分統計了西南氣流實驗期間近兩個月的資料,將地面雨滴譜儀資料劃分成48個特性組,針對每個特性組所對應的正上方雷達資料做平均,找到不同特性組中雷達資料的差異。其結果顯示雨滴越大且數量越多的DSD特徵組,其1公里高度的ZHH與KDP值越大,對流發展越高,有越明顯的碰撞結合過程,此外ZDR此變數與雨滴大小較有關,此結果與第一部份結果相符。本研究結果顯示可透過雙偏極化雷達及雨滴譜儀兩種觀測資料來了解降水雲物理過程。
摘要(英) Studying the microphysical processes of precipitation systems from the perspective of observations is important and challenging. During the 2008 Southwest Monsoon Experiment /Terrain-influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX), huge amount of observational data were collected, which allowed us to study microphysical processes using the observations of a dual-polarimetric radar (NCAR S-POL) and disdrometers.
In the first part of this research, we use vertical profiles of dual-polarimetric measurements to investigate the microphysics characteristics of seven heavy rainfall events. In the second part, we further investigate the differences of vertical structure and microphysics characteristics from different DSD results near the ground observed by disdrometers. Two distinct types of precipitating characteristics can be found in the analyses of seven heavy events. They are: (1) Deep convection (5/26 and 6/13) containing large rain drops, low liquid water content, high graupel water content and pronounced collision coalescence process. (2) Organized convection (6/5 and 6/16) with small rain drops, high liquid water content and less pronounced coalescence process.
In the second part, two months of disdrometer data near the ground during the 2008 SoWMEX are classified into 48 groups. The averages of the vertical profiles of dual-polarimetric measurements above the disdrometer are used to analyze the differences of microphysical processes based on these 48 groups. The results indicate that large and high concentration raindrops are associated with large ZHH, KDP at Z = 1.0 km, deep convection, as well as pronounced collision coalescence process. In addition, the value of ZDR is proportional to the size of raindrops. The results are consistent with those from the first part.
Overall, this study successfully demonstrates the application of combining dual-polarimetric and disdrometer data to investigate the microphysical processes in heavy rainfall events.
關鍵字(中) ★ 雙偏極化雷達
★ 雨滴譜儀
關鍵字(英) ★ dual-polarimetric radar
★ disdrometer
論文目次 摘要 I
Abstract II
誌謝 III
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1 動機 1
1.2 文獻回顧 2
1.3 研究方向 4
第二章 資料與方法 6
2.1 觀測實驗介紹 6
2.2 雨滴譜觀測資料介紹 6
2.2.1 雨滴譜觀測儀器介紹 6
2.2.2 雨滴粒徑分佈計算 7
2.2.3 Gamma 分布計算 8
2.2.4 雨滴譜觀測資料品管 10
2.3 NCAR S-POL雷達資料介紹 11
2.3.1 S-POL雷達介紹 11
2.3.2 雙偏極化雷達參數介紹 11
2.3.3 S-POL雷達資料品管 14
2.4 雨滴粒徑分布(DSD)反演方法 14
2.4.1 利用雷達參數ZHH、ZDR反演Dm、NW關係式 14
2.4.2 Dm、NW平均方法 17
2.5 對流、層狀降雨分類方法 17
第三章 七個降雨個案分析 19
3.1 七個個案天氣簡述 19
3.2 CFADs分析結果 21
3.3 雲物理過程分析結果 24
3.4 DSD分析結果 25
3.5 PID分析結果 26
3.6 綜合分析討論 26
第四章 不同地面DSD的雲物理過程差異 29
4.1 劃分近地面DSD結果方法介紹 29
4.2 不同特徵組垂直結構差異分析 30
4.3 不同特徵組暖雲雲物理過程分析 34
4.4 綜合分析討論 35
第五章 結論與未來展望 36
5.1 結論 36
5.2 未來展望 37
參考資料 39
附表 42
附圖 47
參考文獻 簡巧菱,2006:「台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性」,國立中央大學碩士論文,119頁。
毛又玉,2007:「台灣北部地區層狀與對流降水的雨滴粒徑分布特性」,國立中央大學碩士論文,101頁。
陳奕如,2009:「SoWMEX 實驗期間雨滴粒徑分佈特性之研究」,國立中央大學碩士論文,99頁。
陳姿瑾,2009:「西南氣流實驗之雨滴譜分析研究」,國立台灣大學碩士論文,87頁。
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652–660.
Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 1541–1553.
Bringi, V. N., and V. Chandrasekar 2001: Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge Univ. Press, 63 pp.
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, M. Schoenhuber, 2003: Raindrop Size Distribution in Different Climatic egimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmos. Sci., 60, 354–365.
Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 2238–2255.
Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973–1993.
Jameson, A. R., and E. A. Mueller,1985: Estimation of propagation-Differential Phase Shift from Sequential Orthogonal Linear polarization Radar Measurements. J. Atmos. Oceanic Technol., 2, 133-137.
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259–270.
Kumjian, M., and A. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 1247–1267.
Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 3052–3067.
Marshall, J. S. and Palmer, W. M. K., 1948: The distribution of raindrops with size, J. Meteor., 5, 165–166.
Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52, 1070–1083.
Schonhuber, M., H. Urban, J. P. V. P. Baptista, W. Randeu, and W. Riedler, 1997: Weather radar versus 2D-video-disdrometer data. Weather Radar Technology for Water Resources Management, B. P. F. Bragg Jr. and O. Massambani, Eds., Unesco Press, 159–171.
Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69–76.
Sheppard, B. E., 1990: Measurement of raindrop size distributions using a small Doppler radar. J. Atmos. Oceanic Technol., 7, 255–268.
Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978–2007.
Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118–1140.
Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 1672–1690.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764–1775.
Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor., 24, 580–590.
Xu, W., and E. J. Zipser, 2015: Convective intensity, vertical precipitation structures, and microphysics of two contrasting convective regimes during the 2008 TiMREX. J. Geophys. Res. Atmos., 120, 4000–4016.
Yuter S. E., and R. A. Houze Jr., 1995 : Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941-1963.
Zhang, G., V. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830–841.
指導教授 廖宇慶(Yu-Chieng Liou) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明