參考文獻 |
張楚珺(2011),利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收: 以CO2為例,國立中央大學大氣科學研究所碩士論文,84頁
吳品穎(2014),利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究,國立中央大學大氣科學研究所碩士論文,82頁
王簾傑(2016),利用辛樂克颱風(2008)建立的觀測系統模擬實驗評估系集奇異向量在颱風系集預報之應用
鄭翔文(2017),雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMX IOP#8個案研究,80頁
林哲暉(2018),系集轉換卡爾曼漸進式平滑器在資料同化之應用,90頁
張逸品(2018),基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究,94頁
Anderson, and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758.
──, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. Wea. Rev., 129, 2884–2903.
Bishop, C. H. and Toth, Z. 1999. Ensemble transformation and adaptive observations. J. Atmos. Sci. 56, 1748-1765
Buizza R., J. Tribbia, F. Molteni, and T. Palmer, 1993: Computation of optimal unstable structures for a numerical weather prediction model. Tellus, 45A, 388-407
──, and T. N. Palmer, 1995: The singular vector structure of the atmospheric general circulation. J. Atmos. Sci., 52, 1647–1681
Burgers, G., P. J. van Leeuwen, and Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724.
Enomoto, T., Yamane, S. and Ohfuchi, W. 2006. Simple sensitivity analysis using ensemble forecast. In: Proceedings of Third Workshop on Mechanisms of Climate Variation and its Predictability, Disaster Prevention Research Institute, Kyoto University, Kyoto, pp. 40_43. (In Japanese.).
──, S. Yamane, W. Ohfuchi, 2015: Simple sensitivity analysis using ensemble forecasts. J. Meteor. Soc. Japan, 93, 199-213
Carrassi, A., A. Trevisan, L. Descamps, O. Talagrand, and F. Uboldi, Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable subspace: A comparison with the EnKF, Nonlinear Process. Geophys, 2008, 15. 503-521.
Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739–759
Gene H. Golub, Michacel W. Mahoney, Petros Drineas, and Lek-Heng Lim, 2006.: Bridging the Gap Between Numerical Linear Algebra, Theoretical Computer Science, and Data Applications, SIAM News, 39, No. 8,
Leith, C. E., 1974: Theoretical Skill of Monte-Carlo Forecasts. Mon. Wea. Rev., 102, 409–418.
Lorenz, E. N., 1963: Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130–142.
──, 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3), 321–333.
──, E. N., 1995: Predictability: A problem partly solved. In Seminar on Predictability, volume Vol. I,ECMWF, Reading, UK, 1–18.
Hoffman, R. N. and Kalnay, E., 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus A, 35A, 100–118.
Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–1242.
Hunt, E. J. K., and I. Szunyogh, 2007:Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126.
Montani, A., R. Buizza, and A. Thorpe, 1996: Singular vector calculations for cases of cyclogenesis in the North Atlantic storm-track. Proceedings of the 7th Conference on mesoscale processes, 9-13 September 1996, University of Reading, Reading, UK, pp 617.
Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2002: Exploiting local low dimensionality of the atmospheric dynamics for efficient ensemble Kalman filtering.
──, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.
Patil, D. J., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001b: Identification of local low dimensionality of atmospheric dynamics. Submitted to Tellus,86.,5878-5881
Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317– 2330.
──,1997: Ensemble Forecasting at NCEP and the Breeding Method. Mon. Wea. Rev., 125, 3297–3319.
Wang, X., C. H. Bishop, and S. J. Julier, 2004, Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble?: Monthly Weather Review, 132, 1590–1605
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed Observations. Mon. Wea. Rev., 130, 1913–1924.
Yang, S-C., Baker, D., Li, H., Huff, M., Nagpal, G. and co-authors. 2006.Data assimilation as synchronization of truth and model: experimentswith the 3-variable Lorenz system.J. Atmos. Sci.63, 2340–2354.
──, M. Corazza, A. Carrassi, E. Kalnay, and T. Miyoshi, 2009a: Comparison of ensemble-based and variational-based data assimilation schemes in a quasi-geostrophic model. Mov. Wea. Rev.,137, 693- 709.
──, E. Kalnay and T. Enomoto, 2015: Ensemble Singular Vectors and their use as additive inflation in EnKF, Tellus A, 67, 26536.
Ying, Y., and F. Zhang, 2015: An adaptive covariance relaxation method for ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 141, 2898–2906 |