博碩士論文 105322072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.188.107.57
姓名 陳怡廷(Yi-Ting Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 機場出境行李卸載轉盤突發性故障 航班重新指派之研究
相關論文
★ 橋梁檢測人力機具排班最佳化之研究★ 勤業務專責分工下消防人員每日勤務排班最佳模式之研究
★ 司機員排班作業最佳化模式之研究★ 科學園區廢水場實驗室檢驗員任務指派 最佳化模式之研究
★ 倉儲地坪粉光工程之最佳化模式研究★ 生下水道工程工作井佈設作業機組指派最佳化之研究
★ 急診室臨時性短期護理人力 指派最佳化之探討★ 專案監造人力調派最佳化模式研究
★ 地質鑽探工程人機作業管理最佳化研究★ 職業棒球球隊球員組合最佳化之研究
★ 鑽堡於卵礫石層施作機具調派最佳化模式之研究★ 職業安全衛生查核人員人力指派最佳化研究
★ 救災機具預置最佳化之探討★ 水電工程出工數最佳化之研究
★ 石門水庫服務台及票站人員排班最佳化之研究★ 空調附屬設備機組維護保養排程最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 行李卸載系統為機場營運之重要設備,主要目的為準確地將行李送上飛機且不延誤各班機之起飛時間,使機場之營運順暢。隨著廉價航空的興起及紅眼班機的增加,某國內機場營運者基於日益增加的旅客量,為了因應龐大的運輸,於2015年將第二航廈境部分原先南北座的直線型行李卸載道全面更新成轉盤型行李卸載轉盤,以提升地勤人員作業之效益。在實務上,當行李卸載轉盤遭遇突發性故障時,未以系統最佳化之方法,仍以人工經驗進行調整其排班,不僅難以於短時間之內進行調整其航班規劃且更容易有缺乏整體性規劃及效率之情況產生,進而導致成本增加與機場資源浪費。因此,如何在短時間內有效地調整行李卸載轉盤之指派,使擾動狀態能盡快地恢復正常,使班機準確地依照預定班表飛行及航空公司的地勤人員是否正常作業,實乃當前重要之課題。
本研究利用數學規劃之方法,針對機場出境旅客行李卸載轉盤突發性故障之問題,以最小化所有指派航班之擾動時間加上航班作業重疊時間為目標,構建機場出境行李卸載轉盤突發性故障航班重新指派之模式。於求解方面,由於問題規模甚大,本研究利用撰寫基因演算法結合2-OPT區域搜尋法發展一啟發式解法以求解模式。為測試模式之實用性,本研究將以國內某國際機場之現有機場行李卸載轉盤設施及營運狀況數入資料,進行範例測試且針對不同參數進行敏感度分析,並進而探討實務上在設計最佳化模式及求解演算法時應注意之事項。本研究期望能幫助機場決策者在出境旅客行李卸載轉盤故障時能即時且有效地調整航班與行李卸載轉盤間之指派,以降低航班之延誤、及維持機場服務水準,並將此結果提供給學術界相關研究之參考。
摘要(英) The baggage unloading system is an important equipment for airport operations. Its main purpose is to accurately send baggage to the aircraft and not delay the departure time of each flight, making airport operations smoother. With the rise of low-cost airlines and the increase of red-eye flights, a domestic airport operator has based its ever-increasing number of passengers. Updated to a turntable-type baggage unloading dial to enhance the effectiveness of ground crew operations. In practice, when the baggage unloading carousel encounters a sudden failure, it is not the method of optimizing the system. It still adjusts its schedule with manual experience. It is not only difficult to adjust its flight plan within a short time, but also it is easier to have the lack of overall planning and efficiency results in increased costs and wasted airport resources. Therefore, how to effectively adjust the assignment of the baggage unloading carousel in a short period of time so that the disturbance status can be restored to normal as soon as possible, so that it is an important issue for the flight to accurately fly according to schedule schedules and whether the ground crew of the airline is operating normally.
In this study, a method of mathematical planning is used to solve the problems about airport passenger baggage unloading carousel malfunctions abruptly that failures to minimize the disturbance time of all assigned flights and the overlapping time of flight operations. In terms of the solutions of problems, the proposed model is characterized as NP-hard. Moreover, In order to address the large scale problem efficiently, a genetic algorithm, coupled with a 2-OPT local search, is developed. Besides that, we test the practicability of the model by using a case study including practical information from an international airport in Taiwan to evaluate the model and the heuristic algorithm. This study is expected to provide airport decision makers a useful method to immediately and effectively adjust the assignment between flights and baggage unloading carousels when the outbound passenger baggage unloading carousel fails. This result is able to be used as a reference for relevant researches in the academia.
關鍵字(中) ★ 出境旅客行李卸載轉盤
★ 擾動
★ 數學規劃
★ 基因演算法
★ 2-OPT區域搜尋法
關鍵字(英) ★ Baggage unloading carousel
★ Disturbance
★ Mathematical programming
★ Genetic algorithm
★ 2-OPT
論文目次 摘要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的與範圍 2
1.3研究方法與流程 3
第二章 文獻探討 5
2.1機場相關設備即時擾動之相關文獻 5
2.1.1機場共用櫃檯即時擾動相關文獻 5
2.1.2機場機門即時擾動相關文獻 6
2.2機場出境行李卸載轉盤指派之相關文獻 6
2.3其他即時擾動之相關文獻 8
2.4啟發式演算法之組合最佳化問題 10
2.4.1基因演算法 11
2.4.2基因演算法相關文獻 17
2.5文獻評析 18
第三章 模式構建 19
3.1問題描述 19
3.2行李卸載轉盤指派之相關擾動 21
3.2.1行李卸載轉盤指派之時間擾動 21
3.2.2卸載轉盤指派之空間擾動 21
3.3模式架構 22
3.3.1模式基本假設 22
3.3.2符號說明與數學定式 24
3.3.2.1模式之符號說明 24
3.3.2.2模式之數學定式 25
3.3.3模式應用 27
3.3.4模式求解方法 28
3.3.4.1基因編碼 29
3.3.4.2初始化群體 30
3.3.4.3適應度評估 31
3.3.4.4選擇與複製 31
3.3.4.5交配 32
3.3.4.6可行解調整策略 34
3.3.4.7 2-OPT區域搜尋法 35
3.3.5模式驗證 37
3.4小結 43
第四章 範例測試 44
4.1資料輸入 44
4.1.1現況行李卸載轉盤資料 44
4.1.2機場出境之航班運量預報表相關資料 44
4.1.3意外事件之資料 48
4.1.4相關參數之資料 48
4.1.4.1模式參數設定 48
4.1.4.2演算法參數設定 50
4.2模式發展 50
4.2.1電腦演算環境 50
4.2.2模式輸入資料 50
4.2.3模式輸出資料 51
4.2.4問題規模 51
4.3測試結果與分析 52
4.3.1基因演算法測試分析 53
4.3.1.1收斂情形 53
4.3.1.2參數分析 54
4.3.1.3突變運算子與2-OPT區域搜尋法求解比較 56
4.3.2模式結果 57
4.3.3解碼分析 58
4.3.4模式求解結果與實際規劃情況之比較 60
4.4小結 61
第五章 結論與建議 62
5.1結論 62
5.2建議 63
5.3貢獻 64
參考文獻 65
參考文獻 1. 交通部觀光局97年度年報。
2. 交通部觀光局106年度年報。
3. 汪進財、張束珍(1996),動態機門指派績效評估。運輸計畫季刊,25卷1期,121-144 。
4. 施昺羲(2015)。機場行李運輸系統航班轉盤卸載道指派問題。國立清華大學工業工程與工程管理研究所碩士論文。
5. 洪逸樺(2018)。機場行李卸載轉盤指派問題之研究。國立中央大學土木系研究所碩士論文。
6. 桃園國際機場股份有限公司(2017)。取自網站http://www.taoyuan-airport.com/chinese。
7. 張芯瑋(2007)。以基因演算法求解隨機需求下航空快遞貨物裝櫃規劃問題之研究,國立嘉義大學行銷與運籌研究所碩士論文。
8. 張裕昇(2016)。結合解析與模擬於機場航班轉盤卸載道指派問題。國立清華大學工業工程與工程管理研究所碩士論文。
9. 陳育詩(2016)。救護車動態佈署之隨機最佳化模式。國立臺灣大學土木工程學研究所。
10. 陳毓卿(2007)。因應臨時事件航機停機修護排程調整最佳化之研究。國立中央大學土木系研究所碩士論文。
11. 陳靖昇(2016) 考量公共自行車站上需求之動態自行車調度策略。國立臺灣大學土木工程學研究所。
12. 游守田(2003)。停機坪即時性調度之研究。國立成功大學交通管理學系碩博士班論文。
13. 葛志遠、王永縣(2000)。基於二叉樹結構編碼的基因演算法。清華大學學報:自然科學版,40卷10期,125-128。
14. 苑鳳萍、王晉元(2000)。客運車輛擾動下調度系統之研究。國立交通大學運輸工程與管理研究所碩士論文。
15. 廖建韋(2007)。醫療物資訂購及配送排程規劃之研究。國立中央大學土木系研究所碩士論文。
16. 趙振、嚴?薇、劉敏、劉鋼(2009)。一種基於雙線性鏈表結構編碼的遺傳算法。計算機應用期刊,29卷2期。
17. 盧華安(2001)。因應班機延遲之最佳化即時機門指派。運輸計劃季刊,30卷4期,849-870。
18. 穆文弘(2013)。船期變動下艙位重分配最適化模式之研究。國立臺灣海洋大學運輸科學研究所碩士論文。
19. 韓復華、陳國清、卓裕仁(1997)。成本擾動法在TSP 問題之應用。中華民國第二屆運輸網路研討會論文集,283-292。
20. 顏上堯、杜宇平、陳怡妃(2004)。因應臨時事件機場共用櫃檯即時指派之研究。運輸計劃季刊,33卷1期,59-81。
21. 顏上堯、林至康、劉向邦(2016)。以和諧演算法為基礎之混合全域搜尋法求解最小凹型成本轉運問題。運輸計劃季刊 ,45卷3期,189-215。
22. 顏上堯、陳佳宏、曹智翔(2009)。短期需求受擾動下動態醫療物資輸配送之研究。運輸計劃季刊,38卷3期,297-322。
23. 顏上堯、陳建榮、湯慶輝(2004)。含凹形節線成本最小成本網路流動問題之全域搜尋演算法研究。運輸計劃季刊,33卷2期,277–306。
24. 羅郁婷(2014)。區域型航空公司飛機調度暨維修保養規劃之研究。國立臺灣海洋大學運輸科學研究所碩士論文。
25. Abdelghany, A ., Abdelghany, K., & Narasimhan, R. (2006). Scheduling baggage-handling facilities in congested airports: Journal of Air Transport Management, Volume 12, Issue 2, 76–81.
26. Asco, A., Atkin, J.A.D., & Burke, E.K. (2011).The airport baggage sorting station allocation problem: The 5th Multidisciplinary International Scheduling Conference, MISTA.
27. Asco, A., Atkin, J.A.D., & Burke, E.K. (2013). An analysis of constructive algorithms for the airport baggage sorting station assignment problem: Journal of Scheduling, Volume 17, Issue 6, 601–619.
28. Asco, A., Atkin, J.A.D., & Burke, E.K. (2014). An analysis of constructive algorithms for the airport baggage sorting station assignment problem: Journal of Scheduling, Volume 17, Issue 6, 601–619.
29. Asco, Amadeo. (2016).An Analysis of Robustness Approaches for the Airport Baggage Sorting Station Assignment Problem: Journal of Optimization ,Volume 2016 .
30. Birbil, S. I., and Fang, S. C. (2003).Electromagnetism-like Mechanism for Global Optimization: Journal of Global Optimization, Volume 25, Issue 6, 263-282.
31. Charon, I. and Hurdy, O.(1993). The Noising Method: A New Method for Combinatorial Optimization: Operations Research Letters, Volume 14, 133-137.
32. Choi, J. N., Oh, S. K., & Pedrycz, W. (2009). Identification of fuzzy relation models using hierarchical fair competition-based parallel genetic algorithms and information granulation: Applied Mathematical Modelling, Volume33, Issue 6, 2791-2807.
33. D′Ariano, A., Pacciarelli, D., Pistelli, M., & Pranzo, M. (2015). Real?time scheduling of aircraft arrivals and departures in a terminal maneuvering area: Networks, Volume 65, No. 3, 212-227.
34. Dorigo, M. and Gambardella, L. M.(1996). A Study of Some Properties of Ant-Q : Proceedings of PPSN IV-Fourth International Conference on Parallel Problem Solving from Nature, Springer-Verlag, Berlin, 656-665.
35. Dueck, G.(1993).New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-Record Travel: Journal of Computational Physics, Volume 104, 86-92.
36. Dueck, G., and Scheuer, T.(1990). Threshold Accepting: A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing: Journal of Computational Physics, Volume 90, 161-175.
37. Garcia-Najera, A., & Bullinaria, J. A. (2011). An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows:Computers & Operations Research, 38(1), 287-300.
38. Geem, Z. W., Kim, J. H., and Loganathan, G. V.(2001). A New Heuristic Optimization Algorithm: Harmony Search: Simulation, Volume 76, No. 2, 60-68.
39. Glover, F. (1989).Tabu Search, PartⅠ: ORSA Journal on Computing , Volume 1, No. 3, 190-206.
40. Glover, F. (1990).Tabu Search- Part II: ORSA Journal on Computing, Volume 2, No. 1, 4-32.
41. Glover, F., and Laguna, M (1997). Tabu search, Kluwer Academic Publishers: Massachusetts.
42. Gottlieb, J., & Paulmann, L. (1998). Genetic algorithms for the fixed charge transportation problem: In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on , 330-335.
43. Gu, J. and Huang, X.(1994). Efficient Local Search with Search Space Smoothing: A Case Study of the Traveling Salesman Problem (TSP): IEEE Transaction on Systems, Man and Cybernetics, Volume 24, 728-739.
44. Hansen, P. and Mladenovic, N.(2007). Variable Neighborhood Search: Computers and Operations Research, Volume. 24, 1097-1100.
45. Huang, E., Mital, P., Goetschalckx, M., & Wu, K. (2016). Optimal assignment of airport baggage unloading zones to outgoing flights: Transportation Research Part E: Logistics and Transportation Review, 94, 110-122.
46. Kennedy, J. and Spears, W.(1998). Matching Algorithms to Problems: An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator: IEEE World Congress on Computational Intelligence, 74-77.
47. Kim, S. H., Feron, E., Clarke, J. P., Marzuoli, A., & Delahaye, D. (2013). Airport gate scheduling for passengers, aircraft, and operation: arXiv preprint arXiv:1301.3535.
48. Kirkpatrick, S., Gelatt , C. D., and Vecchi, M.P.(1983).Optimization by Simulated Annealing: Science, Volume 220, 671-680.
49. Lin, C. H., & Hu, J. W. (2008). A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem: World Academy of Science, Engineering and Technology, 42, 465-475.
50. Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell system technical journal, 44(10), 2245-2269.
51. Mansi, R., Hanafi, S., Wilbaut, C., & Clautiaux, F. (2012). Disruptions in the airline industry: math-heuristics for re-assigning aircraft and passengers simultaneously: European Journal of Industrial Engineering 10, Volume 6, No. 6, 690-712.
52. Mei, D. Q., Du, X. Q., & Chen, Z. C. (2009). Optimization of dynamic parameters for a traction-type passenger elevator using a dynamic byte coding genetic algorithm: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(3), 595-605.
53. Michalewicz, Z., Janikow, C. Z., & Krawczyk, J. B. (1992). A modified genetic algorithm for optimal control problems: Computers & Mathematics with Applications, Volume 23, Issue 12, 83-94.
54. Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
55. Naoum-Sawaya, J., & Elhedhli, S. (2013). A stochastic optimization model for real-time ambulance redeployment: Computers & Operations Research, Volume 40, Issue 8 , 1972-1978
56. Pita, J. P., Barnhart, C., & Antunes, A. P. (2012). Integrated flight scheduling and fleet assignment under airport congestion: Transportation Science, Volume 47, No. 4, 477-492.
57. Reeves, C. R. (1993). Improving the Efficiency of Tabu Search for Machine Sequencing Problems: Journal of the Operation Research Society, Volume 44, No. 4, 75-382.
58. Sedighpour, M., Yousefikhoshbakht, M., & Mahmoodi Darani, N. (2012). An effective genetic algorithm for solving the multiple traveling salesman problem: Journal of Optimization in Industrial Engineering8, 73-79.
59. Tang, C. H., Yan, S., & Hou, Y. Z. (2010). A gate reassignment framework for real time flight delays: A Quarterly Journal of Operations Research, Volume 3, 299-318.
60. Thengvall, B. G., Yu, G., & Bard, J. F. (2001). Multiple fleet aircraft schedule recovery following hub closures: Transportation Research Part A: Policy and Practice, Volume 35, No. 4, 289-308.
61. Wang, H., Luo, Y., & Shi, Z. (2013). Real-time gate reassignment based on flight delay feature in hub airport: Mathematical Problems in Engineering.
62. Warburg, V., Hansen, T. G., Larsen, A., Norman, H., & Andersson, E. (2008). Dynamic airline scheduling: An analysis of the potentials of refleeting and retiming: Journal of Air Transport Management, Volume 14, No. 4, 163-167.
63. Whitley, D., Mathias, K., & Fitzhorn, P. (1991). Delta coding: An iterative search strategy for genetic algorithms: In ICGA , Volume 91, 77-84.
64. Yan, S., Chen, C. Y., & Tang, C. H. (2009). Airport gate reassignment following temporary airport closures: Transportmetrica, Volume 5, Issue 1, 25-41.
65. Yan, S., Hsiao, F.Y., Guo, J. and Chen, Y.C. (2011). Effective Aircraft Maintenance Schedule Adjustment Following Incidents: Transportation Planning and Technology, Vol. 34, No. 8, pp. 727-745.
66. Yan, S., Tang, C.H., & Chen, C.H. (2008). Reassignments of common-use check-in counters following airport incidents: The Journal of the Operational Research Society, Volume 59, No. 8, 1100-1108.
67. Yan, S., Tang, C.H., & Chen, J.H. (2014).Common-use check-in counter reassignments with a variable number of service lines and variable length of time window: Journal of the Chinese Institute of Engineers, Volume 37, 643–658.
68. Yang, X. S., & Deb, S. (2009). Cuckoo search via Levy flights: In Nature & Biologically Inspired Computing, NaBIC 2009, 210-214.
69. Yimer, A. D., & Demirli, K. (2010). A genetic approach to two-phase optimization of dynamic supply chain scheduling: Computers & Industrial Engineering, Volume 58, Issue 3, 411-422.
70. Yu, C., & Lau, H.Y. (2015). Airport gate reassignment based on the optimization of transfer passenger connections: Journal of Traffic and Logistics Engineering, Volume 3, No. 1, 25-30.
71. Zhang, T., Zhang, Y. J., & Liu, S. X. (2008). A mixed integer programming model and improved genetic algorithm for order planning of iron-steel plants: International journal of information and management sciences, Volume 19, No. 3, 413-435.
指導教授 顏上堯(Shang-Yao Yan) 審核日期 2018-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明