參考文獻 |
[1] Anastasopoulos, I., Gazetas, G., Bransby, M. F., Davies, M. C. R., and EI Nahas, A., (2007) “ Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Ex-periments,” Journal of Geotechnical and Geoenvironmental Engi-neering, ASCE, Vol.133, pp.943-958.
[2] Anastasopoulos, I., Gazetas, G., (2007) “ Foundation-structure systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories,” Bulletin of Earthquake Engineering, Vol.5, pp.277-301.
[3] Azzous, A.S., Baligh, M.M., and Whittle, A.J., (1990) “Shaft Re-sistance of Piles in Clay,” Journal of Geotechnical Engineering, ASCE, Vol.116, No.2, pp.205-221.
[4] Baziar, M. H., Nabizadeh Ali, Lee, C. J., Hung, W. Y., (2014) “ Centrifuge modeling of interaction between reverse faulting and tunnel,” Soil Dynamics and Earthquake Engineering, Vol.65, pp.151-164.
[5] Bjerrum, L., Johannesson, I. J., and Eido, O., (1969) “Reduction of skin Friction on Steel Piles to Rock,” Proceeding of the Inter-national Conference on Soil Mechanics and Foundation Engi-neering, Vol.2, pp.27-34.
[6] Bransby, M. F., Davies, M. C. R., and Nahas, A. El., (2008) “ Centrifuge modeling of normal fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol. 6, Issue 4, pp.585-605.
[7] Bransby, M. F., Davies, M. C. R., and Nahas, A. El., (2008) “Cen-trifuge modeling of reverse fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol. 6, Issue 4, pp.607-628.
[8] Bray, J. D., Seed R. B., Cluff, L. S., and Seed, H. B., (1994) “Earthquake fault rupture propagation through soil,” Journal of Geotechnical Engineering, Vol.120, pp.543-561.
[9] Burland, J. F., (1973) “Shaft Friction of Piles in Clay,” Ground Engineering, Vol.6,No.3,pp.33-42.
[10] Chang, Y. Y., Lee, C. J., Huang, W. J., Lin, M. L., Hung, W. Y., and Lin, Y. H., (2013) “Use of centrifuge experiments and discrete ele-ment analysis to model the reverse fault slip,” International Journal of Civil Engineering, Transaction B : Geotechnical Engineering, Vol.11, No.2.
[11] Chang, Y. Y., Lee, C. J., Huang, W. C., Hung, W. Y., Huang, W. J., Lin, M. L., Chen, Y. H., (2015) “ Evolution of the surface defor-mation profile and subsurface distortion zone during reverse faulting through overburden sand,” Engineering Geology, Vol.184, pp.52-70.
[12] Endo, M., Minou, K., and Shibata, T., (1969) “Negative Friction Acting on Steel Pipe Piles in Clay,” Proceed of the Interna-tional Conference on Soil Mechanics and Foundation Engineering, Vol.2, paper12.
[13] Fadaee, M., Ezzatyzdi, P., Anastasopoulos, I., and Gazetas, G., (2016) “ Mitigation of reverse faulting deformation using a soil bentonite wall: Dimensional analysis, parametric study, design im-plications,” Soil Dynamics and Earthquake Engineering, Vol.89, pp.248-261.
[14] Garlanger, J. E., (1974) “ Measurement of Pile Downdrag Beneath a Bridge Abutment,” Highway Research Board, TRR No.517.
[15] Lee, J. C., Rubin, M. C., Mueller, K., Chen, Y. G., Chan, Y. C., Sieh,K., Chu, H. T. and Chen, W.S., (2004) “ Quantitative analysis of movement along an earthquake thrust scarp : a case study of a vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng,Western Taiwan,” Journal of Asian Earth Sciences, Vol.23, pp.263-273.
[16] Lin, M. L., Chung, C. F., and Jeng, F. S., (2006) “ Deformation of overburden soil induced by thrust fault slip,” Engineering Geology, Vol.88, pp.70-89
[17] M. Duncan, Leonard T. Evans, and Phillip S. K. Ooi, (1994) “ Lateral load analysis of single piles and drilled shafts,” Journal of Geotechnical Engineering, ASCE, Vol.120, No.5, pp.1018-1033.
[18] Mahmound N. Hussien, Tetsuo Tobita, Susumu Iai, and Mourad Karray, (2016) “ Soil-pile-structure kinematic and inertial interaction observed in geotechnical centrifuge experiments,” Soil Dynamics and Earthquake Engineering, Vol.89, pp.75-84.
[19] Phillip S. K. Ooi and M. Duncan, (1994) “ Lateral load analysis of groups of piles and drilled shafts,” Journal of Geotechnical Engi-neering, ASCE, Vol.120, No.6, pp.1034-1050.
[20] Poulos, H. G., and Davis, E. H., (1975) “Prediction of Downdrag Force in End-Bearing Piles,” Journal of Geotechnical Engineering, ASCE, Vol.101,No.2, pp.189-204.
[21] Tomlinson, M. J., (1970) “ The Adhesion of Piles in Stiff Clay,” Construction Industry Research and Information Association, Re-search Report, No.26.
[22] Vesic, A. S., (1977) Design of pile foundation,” Synthesis of Highway Practice 42, National Cooperative Highway Research Program, Transportation Research Board, National Research Coun-cil, Washington D.C..
[23] 中華民國大地工程學會 (2001),「建物物基礎構造設計規範」,內政部營建署,台北。
[24] 日本道路協會 (1996),「道路橋示方書‧同解說」,日本。
[25] 日本鋼管樁協會 (1978),「表面負摩擦力之作用」,鋼管樁協會報告,第2號。
[26] 李崇正 (1991),離心模型試驗在大地工程之應用,地工技術雜誌,第36期,第76-91頁。
[27] 李崇正 (2003),「模型試驗在大地工程教學的應用」,中國土木水利工程學刊,第30卷,第4期,第89-92頁。
[28] 呂昕澔 (2014),「以離心模型模擬離岸風機單樁受單向反覆水平側推行為」,碩士論文,國立中央大學土木工程研究所,中壢。
[29] 沈世涵 (2018),「以離心模型試驗探討逆斷層作用下單樁與土壤互制反應」,碩士論文,國立中央大學土木工程研究所,中壢。
[30] 吳杰祐 (2008),「逆斷層作用與土壤內樁基礎之互制關係」,碩士論文,國立台灣大學土木工程研究所,台北。
[31] 洪汶宜、張有毅、陳婷、李崇正、黃文昭、黃文正、林銘郎、林燕慧 (2012),「逆斷層引致近地表變形之離心模擬」,2012 岩盤工程研討會,苗栗。
[32] 洪汶宜、李崇正、張有毅、黃文昭、黃文正、林銘郎、林燕慧 (2014),「以離心模型試驗探討正逆斷層引致的地表變形與剪裂帶發展」,經濟部中央地質調查所特刊,第28號,第129-151頁,台北。
[33] 陳紀廷 (2008),「點承與摩擦樁負摩擦力之模型試驗」,碩士論文,國立中央大學土木工程研究所,中壢。
[34] 陳榮華 (2013),「以離心模擬正斷層及逆斷層通過黏土地層引致的地表變形特性」,碩士論文,國立中央大學土木工程研究所,中壢。
[35] 張有毅 (2013),「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程研究所,中壢。
[36] 歐晉德 (1987),「基樁受填土影響之側向力問題」,地工技術雜誌,第18期,第8-13頁。
[37] 歐晉德 (1987),「基樁負摩擦力」,地工技術雜誌,第18期,第24-33頁。
[38] 廖奕易 (2013),「以離心模型試驗模擬逆斷層錯動近地表變形特性」,碩士論文,國立中央大學土木工程研究所,中壢。
[39] 蔡育昌 (2016),「以離心模型模擬圓形與壁式基樁受軸向壓力之行為比較」,碩士論文,國立中央大學土木工程研究所,中壢。
[40] 謝依航 (2006),「基樁負摩擦力之模型試驗」,碩士論文,國立中央大學土木工程研究所,中壢。
[41] 鍾春富、林銘郎、鄭富書、王景帄、姚大鈞 (2005),「逆斷層斷盤引致上覆土層變形行為探討」,經濟部中央地質調查所特刊,第16號,第91-108頁。 |