博碩士論文 105426014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:18.118.126.123
姓名 張軒銘(Hsuan-Ming Chang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 TFT-LCD廠之自動化搬運系統的多屬性派送控制方法
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) TFT-LCD面板產業為近年來台灣最快速發展的產業之一,在TFT-LCD 系統中投資興建更大之玻璃基板尺寸的面板廠,一直以來都是廠商擴大產能規模及提高產品價格競爭力的主要方式,由於隨著面板廠生產的玻璃基板面積越大,對所能切割的片數越多,不僅可以增加面板產量,亦能降低面板的單位生產成本,因此要面臨尺寸越大的基板搬運需求,其搬運的效率更顯得其重要性。
現今TFT-LCD 面板廠都已導入電腦整合製造系統來整合全自動化的生產環境,而 AMHS為其中核心的一環,並配合製造執行系統在生產過程中處理玻璃基板的搬運與儲存作業,而組成AMHS的自動化物料搬運系統主要設備包括AGV、RGV和根據林坤濱(2008)所提出的內嵌式自動倉儲(In-Line Stocker)的Stacker Crane,故要如何依照生產流程及物料搬運,做出最有效率的搬運流動規劃,對未來的生產效率有其重大的影響。
本研究針對TFT-LCD 系統中Array製程內的三個決策問題做探討,分別是Stacker Crane之Cassette選取問題、In-Line Stocker之出口點選取問題與RGV之Cassette選取問題,並針對三個研究問題分別提出三個多屬性派送法則。利用仿真模擬軟體Arena建構類似TFT-LCD廠的環境,期望從三個研究問題的多屬性派送法則中將產生之結果再與其他研究法則進行比較,找出最合適的派送問題決策,進而提昇整個系統派送控制以達到最佳作業效率。
摘要(英) In recent years, TFT-LCD industry is one of the fastest growing industries in Taiwan. In order to produce a larger size panel has always been the expansion of production capacity and the improvement of product price competitiveness. Because the larger panel produced by the panel factory, the more the number of sheets that can be cut. So the efficiency of its handling is even more important.
TFT-LCD panel factories have introduced computer integrated manufacturing systems to integrate automated production environments, and AMHS is an improtant part of them. The main equipment of the automated material handling system contained AGV, RGV and the In-line Stocker.
In this study, we focus on three decision-making problems in the Array process of TFT-LCD system. Which are Stacker Crane′s Cassette selection problem, In-Line Stocker′s exit point selection problem and RGV′s Cassette selection problem. Three multi-attribute dispatching rules are proposed separately. Using the simulation software to construct an environment of the TFT-LCD factory, and we expected to compare the results of the multi-attribute dispatching rules of the three research questions with other research rules.
關鍵字(中) ★ TFT-LCD
★ AMHS
★ Intra-Bay搬運
★ Inter-Bay搬運
★ 多屬性派送
★ 系統模擬
關鍵字(英) ★ TFT-LCD
★ AMHS
★ Intra-Bay
★ Inter-Bay
★ Multi-attribute decision making
★ System simulation
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究環境 3
1.4 論文架構 5
第2章 文獻探討 7
2.1 TFT-LCD 的構造與製程介紹 8
2.1.1 Array 工程 9
2.1.2 面板工程(Cell) 10
2.1.3 模組工程(Module) 10
2.2 無人搬運車之派車相關研究 11
2.2.1 單載量AGV 的派送問題 11
2.2.2 多載量AGV 的派送問題 13
2.2.3  RGV 的派送問題 16
2.2.4  Stacker crane的決策派送問題 17
2.3 TFT-LCD廠之派送相關研究 19
2.4 半導體晶圓廠之派送相關研究 22
第3章 研究方法 28
3.1 研究環境說明 28
3.2 建立多屬性決策法則方法整理 30
3.3 作業流程符號及變數定義 32
3.4 TFT-LCD系統中Array製程之工作站與無人搬運車作業流程 32
3.4.1 Cassette進入系統之左側工作站流程 32
3.4.2 Cassette進入系統之右側工作站流程 33
3.4.3 左側 RGV 之派送作業流程 34
3.4.4 右側 RGV 之派送作業流程 40
3.4.5 In-Line Stocker之一般加工機台作業流程 45
3.4.6 In-Line Stocker之Stacker Crane作業流程 46
3.4.7 完成品集中工作站之作業流程 54
3.5 單屬性派送法則說明 55
3.5.1 Stacker Crane之Cassette選取法則 55
3.5.2 In-Line Stocker 之出口點選取法則 56
3.5.3 RGV之Cassette選取法則 59
3.6 多屬性派送評估法則說明 61
3.6.1 Stacker Crane之Cassette選取法則 61
3.6.2 In-Line Stocker 之出口點選取法則 64
3.6.3 RGV之Cassette選取法則 66
第4章 實驗與分析 69
4.1 前言 69
4.2 模擬實驗 69
4.2.1 環境設定 69
4.2.2 系統Cassette設定 72
4.2.3 環境假設 72
4.2.4 實驗因子組合 73
4.3 績效評估準則 75
4.4 統計分析 76
4.4.1 依『產出量(Throughput)』為績效評估值 77
4.4.2 依『Cassette流程時間(CFT)』為績效評估值 87
4.4.3 依『Cassette差異時間(CLT)』為績效評估值 97
4.4.4 依『Cassette延遲時間(CTT)』為績效評估值 107
4.4.5 依『Cassette提早時間(CET)』為績效評估值 117
4.5 實驗結論 126
第5章 結論與後續建議 128
5.1 研究結論 128
5.2 未來研究建議 129
參考文獻 130
中文部分 130
英文部分 132
相關網站 140
參考文獻 中文部分
1. 王緯俊,2006,「晶圓廠 Intrabay 內多載量 AGV 之負載揀取法則與載取派車法則的搭配和優先晶舟的考量」,國立中央大學工業管理研究所,碩士論文。
2. 吳雅鈴,2012,「單迴圈RGV物料搬運系統之模擬分析」,國立高雄第一科技大學運籌管理研究所,碩士論文。
3. 周哲維,2016,「以決策為基礎之智能製造系統架構」,國立清華大學工業工程與工程管理學系,碩士論文,1-135。
4. 林育如,2008,「以離散事件模擬及雙反應曲面法求解十二吋晶圓廠自動物料搬運系統之直接式搬運策略」,國立成功大學製造資訊與系統研究所,碩士論文。
5. 林坤濱,2008,「內嵌式自動倉儲(In-line Stocker)於大尺寸面板廠應用之探討-以 TFT-LCD 公司為例;The study of In-line Stocker implementation in large size panel fabrications - a case study of TFT-LCD company」,國立中央大學工業管理研究所在職專班,碩士論文。
6. 林聖昆,2009,「自動化物料搬運系統之動態車數分析」,國立清華大學工業工程與工程管理學系,碩士論文。
7. 張羽沛,2010,「自動化搬運系統之啟發式優先權派車法則應用在十二吋晶圓廠瓶頸區之研究」,國立高雄應用科技大學工業工程與管理系所,碩士論文。
8. 張博凱,2006,「JIT 環境中以懲罰值為基準的單載量 AGV 控制方法」,國立中央大學工業管理研究所,碩士論文。
9. 張婷珺,2006,「十二吋晶圓廠自動物料搬運系統分段式迴圈設計之探討與分析」,國立成功大學製造工程研究所,碩士論文。
10. 楊景如、沙永傑、洪瑞雲,2008,「晶圓廠自動化物料搬運系統之搬運策略模擬研究」,國立交通大學工業工程與管理系所,博士論文。
11. 劉顥程,2012,「製造系統之無人搬運車的控制問題研究」,國立中央大學工業管理研究所,博士論文。
12. 鄭哲昀,2012,「晶圓廠 Interbay 自動化物料搬運系統中自動倉儲 (Stocker) 內的晶舟盒選取之研究」,國立中央大學工業管理研究所,碩士論文。
13. 蕭鳳儒,2009,「運用軌道緩衝區設計改善自動搬運系統晶圓倉儲傳送壅塞的問題-以半導體晶圓代工廠為例」,國立成功大學工程管理碩士在職專班,碩士論文。
14. 謝予茜,2008,「晶圓廠自動化物料搬運系統交通管制之研究」,國立臺北科技大學工業工程與管理研究所,碩士論文。



英文部分
15. Asokan, P., Jerald, J., Arunachalam, S., & Page, T. (2008). Application of adaptive genetic algorithm and particle swarm optimisation in scheduling of jobs and AS/RS in FMS. International Journal of Manufacturing Research, 3(4), 393-405.
16. Atmaca, E., & Ozturk, A. (2013). Defining order picking policy: A storage assignment model and a simulated annealing solution in AS/RS systems. Applied Mathematical Modelling, 37(7), 5069-5079.
17. Avila, T., Corberan, A., Plana, I., & Sanchis, J. M. (2015). The stacker crane problem and the directed general routing problem. Networks, 65(1), 43-55.
18. Bozer, Y. A., & Yen, C. K. (1996). Intelligent dispatching rules for trip-based material handling systems. Journal of Manufacturing Systems, 15(4), 226-239.
19. Brezovnik, S., Gotlih, J., Bali?, J., Gotlih, K., & Brezo?nik, M. (2015). Optimization of an automated storage and retrieval systems by swarm intelligence. Procedia Engineering, 100, 1309-1318.
20. Chang, C. Y., & Chiang, K. H. (2009). Intelligent fuzzy accelerated method for the nonlinear 3-D crane control. Expert Systems with Applications, 36(3), 5750-5752.
21. Chang, X., Dong, M., & Yang, D. (2013). Multi-objective real-time dispatching for integrated delivery in a Fab using GA based simulation optimization. Journal of Manufacturing Systems, 32(4), 741-751.
22. Chen, F. F., Huang, J., & Centeno, M. A. (1999). Intelligent scheduling and control of rail-guided vehicles and load/unload operations in a flexible manufacturing system. Journal of Intelligent Manufacturing, 10(5), 405-421.
23. Chen, J. C., Chen, T. L., Pratama, B. R., & Tu, Q. F. (2016). Capacity planning with ant colony optimization for TFT-LCD array manufacturing. Journal of Intelligent Manufacturing, 1-19.
24. Chen, J. C., Chen, Y. Y., Chen, T. L., & Lin, J. Z. (2017). Comparison of simulated annealing and tabu-search algorithms in advanced planning and scheduling systems for TFT-LCD colour filter fabs. International Journal of Computer Integrated Manufacturing, 30(6), 516-534.
25. Cho, H. M., & Jeong, I. J. (2017). A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops. Computers & Industrial Engineering, 106, 174-181.
26. Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic approach for optimising AGV movements. Journal of Intelligent Manufacturing, 1-15.
27. Cong, P. A. N., Zhang, J., & Wei, Q. I. N. (2017). Real-time OHT Dispatching Mechanism for the Interbay Automated Material Handling System with Shortcuts and Bypasses. Chinese Journal of Mechanical Engineering, 30(3), 663-675.
28. Egbelu, P. J., & Tanchoco, J. M.(1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
29. Gaskins, R. J., & Tanchoco, J. M.(1987). Flow path design for automated guided vehicle systems. International Journal of Production Research, 25(5), 667-676.
30. Gen, M., Zhang, W., Lin, L., & Yun, Y. (2017). Recent advances in hybrid evolutionary algorithms for multiobjective manufacturing scheduling. Computers & Industrial Engineering.
31. Govindan, K., Balasundaram, R., Baskar, N., & Asokan, P. (2017). A hybrid approach for minimizing makespan in permutation flowshop scheduling. Journal of Systems Science and Systems Engineering, 26(1), 50-76.
32. He, F., Chen, Y., & Zhao, S. (2008). Application of fuzzy control in the stacker crane of an AS/RS. In Fuzzy Systems and Knowledge Discovery, 2008. FSKD′08. Fifth International Conference on (Vol. 3, pp. 508-512). IEEE.
33. Hino, H., Kobayashi, Y., Higashi, T., & Ota, J. (2009). Control methodology of stacker cranes for collision avoidance considering dynamics in a warehouse. In Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on (pp. 983-988). IEEE.
34. Ho, Y. C., & Liao, T. W. (2009). Zone design and control for vehicle collision prevention and load balancing in a zone control AGV system. Computers & Industrial Engineering, 56(1), 417-432.
35. Ho, Y. C., & Liu, H. C. (2006). A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs. Computers & Industrial Engineering, 51(3), 445-463.
36. Ho, Y. C., & Su, T. S. (2012). The machine layout within a TFT-LCD bay with a multiple-stacker crane in-line stocker. International Journal of Production Research, 50(18), 5152-5172.
37. Ho, Y. C., Lin, J. W., Liu, H. C., & Yih, Y. (2016). A study on the lot production management in a thin-film-transistor liquid-crystal display fab. Journal of Manufacturing Systems, 40, 9-25.
38. Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. Journal of Manufacturing Systems, 31(3), 288-300.
39. Hu, W., & Mao, J. (2012). Online dispatching of rail-guided vehicles in an automated air cargo terminal. In Industrial Engineering and Engineering Management (IEEM), 2012 IEEE International Conference on (pp. 1344-1348). IEEE.
40. Hu, Y. H., Huang, S. Y., Chen, C., Hsu, W. J., Toh, A. C., Loh, C. K., & Song, T. (2005). Travel time analysis of a new automated storage and retrieval system. Computers & Operations Research, 32(6), 1515-1544.
41. Huang, Y. S., & Chen, H. W. (2016). A mixed dispatching rule for semiconductor wafer fabrication. International Journal of Systems Science: Operations & Logistics, 1-9.
42. Im, K., Kim, K., Park, T., & Lee, S.(2009). Effective vehicle dispatching method minimising the blocking and delivery times in automatic material handling systems of 300 mm semiconductor fabrication. International Journal of Production Research, 47(14), 3997-4011.
43. Jamrus, T., Chien, C. F., Gen, M., & Sethanan, K. (2017). Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing.
44. Kaspi, M., & Tanchoco, J. M. A.(1990). Optimal flow path design of unidirectional AGV systems. The International Journal of Production Research, 28(6), 1023-1030.
45. Kesen, S. E., & Baykoc, O. F. (2007). Simulation of automated guided vehicle (AGV) systems based on just-in-time (JIT) philosophy in a job-shop environment. Simulation Modelling Practice and Theory, 15(3), 272-284.
46. Klei, C. M., & Kim, J. (1996). AGV dispatching. International Journal of Production Research, 34(1), 95-110.
47. Koo, P. H., Jang, J., & Suh, J. (2005). Vehicle dispatching for highly loaded semiconductor production considering bottleneck machines first. International Journal of Flexible Manufacturing Systems, 17(1), 23-38.
48. Koo, P. H., Park, M. J., & Koh, S. G. (2016). Simulation analysis of operational control decisions in semiconductor wafer fabrication. In Proc. ICAOR (p. 102).
49. Kung, Y., Kobayashi, Y., Higashi, T., Sugi, M., & Ota, J. (2014). Order scheduling of multiple stacker cranes on common rails in an automated storage/retrieval system. International Journal of Production Research, 52(4), 1171-1187.
50. Lee, J. (1999). Dispatching rail-guided vehicles and scheduling jobs in a flexible manufacturing system. International journal of production research, 37(1), 111-123.
51. Lee, J., & Srisawat, T. (2006). Effect of manufacturing system constructs on pick-up and drop-off strategies of multiple-load AGVs. International Journal of Production Research, 44(4), 653-673.
52. Lee, S. G., De Souza, R., & Ong, E. K. (1996). Simulation modelling of a narrow aisle automated storage and retrieval system (AS/RS) serviced by rail-guided vehicles. Computers in Industry, 30(3), 241-253.
53. Li, L., Sun, Z., Zhou, M., & Qiao, F. (2013). Adaptive dispatching rule for semiconductor wafer fabrication facility. IEEE Transactions on Automation Science and Engineering, 10(2), 354-364.
54. Li, M., Chen, X., & Chen, X. (2010). A hybrid genetic algorithm for dispatching optimization problem of transportation system in Automated Storage and Retrieval System. In Intelligent Control and Automation (WCICA), 2010 8th World Congress on (pp. 1206-1211). IEEE.
55. Li, Y., Jiang, Z., & Jia, W. (2014). An integrated release and dispatch policy for semiconductor wafer fabrication. International Journal of Production Research, 52(8), 2275-2292.
56. Liao, D. Y., & Fu, H. S.(2004). Speedy delivery-dynamic OHT allocation and dispatching in large-scale, 300-mm AMHS management. IEEE Robotics & Automation Magazine, 11(3), 22-32.
57. Lin, J. T., Wang, F. K., & Chang, Y. M. (2006). A hybrid push/pull-dispatching rule for a photobay in a 300mm wafer fab. Robotics and Computer-Integrated Manufacturing, 22(1), 47-55.
58. Lin, Y. H., Chiu, C. C., & Tsai, C. H. (2008). The study of applying ANP model to assess dispatching rules for wafer fabrication. Expert Systems with Applications, 34(3), 2148-2163.
59. Liu, H. C., & Yih, Y. (2013). A fuzzy-based approach to the liquid crystal injection scheduling problem in a TFT-LCD fab. International Journal of Production Research, 51(20), 6163-6181.
60. Min, H. S., & Yih, Y. (2003). Selection of dispatching rules on multiple dispatching decision points in real-time scheduling of a semiconductor wafer fabrication system. International Journal of Production Research, 41(16), 3921-3941.
61. Morandin, O., Carida, V. F., Kato, E. R. R., & Fonseca, M. A. S. (2011). A hierarchical fuzzy rule-based building model applied to a AGV dispatching system in an FMS. In Robotics and Automation (ICRA), 2011 IEEE International Conference on (pp. 3764-3769). IEEE.
62. Ndiaye, M. A., Dauzere-Peres, S., Yugma, C., Rulliere, L., & Lamiable, G. (2016, December). Automated transportation of auxiliary resources in a semiconductor manufacturing facility. In Winter Simulation Conference (WSC), 2016 (pp. 2587-2597). IEEE.
63. Nishi, T., & Tanaka, Y. (2012). Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(5), 1230-1243.
64. Sarin, S. C., Varadarajan, A., & Wang, L. (2011). A survey of dispatching rules for operational control in wafer fabrication. Production Planning and Control, 22(1), 4-24.
65. Shimizu, T., Suzuki, K., Naito, S., & Ito, S. (2009). Two-degree-of-freedom control of a stacker crane. In ICCAS-SICE, 2009 (pp. 2480-2484). IEEE.
66. Shin, H. J., & Kang, Y. H. (2010). A rework-based dispatching algorithm for module process in TFT-LCD manufacture. International Journal of Production Research, 48(3), 915-931.
67. Smoczek, J., & Szpytko, J. (2014). Evolutionary algorithm-based design of a fuzzy TBF predictive model and TSK fuzzy anti-sway crane control system. Engineering Applications of Artificial Intelligence, 28, 190-200.
68. Song, S., Li, A., & Xu, L. (2008). AGV Dispatching strategy based on theory of constraints. In Robotics, Automation and Mechatronics, 2008 IEEE Conference on (pp. 922-925). IEEE.
69. Staudecker, M., Schlacher, K., & Hansl, R. (2008). Passivity based control and time optimal trajectory planning of a single mast stacker crane. IFAC Proceedings Volumes, 41(2), 875-880.
70. Su, T. S., & Hwang, M. H. (2017). Efficient machine layout design method with a fuzzy set theory within a bay in a TFT-LCD plant. Procedia Manufacturing, 11, 1863-1870.
71. Thurer, M., & Stevenson, M. (2016). Workload control in job shops with re-entrant flows: an assessment by simulation. International Journal of Production Research, 54(17), 5136-5150.
72. Tseng, S. S., Chang, F. M., Chu, Y. S., & Chi, P. J. (2011). A GA-based method to reduce material handling: the case of TFT-LCD array Fabs in Taiwan. International Journal of Production Research, 49(22), 6691-6711.
73. Udhayakumar, P., & Kumanan, S. (2010). Task scheduling of AGV in FMS using non-traditional optimization techniques. International Journal of Simulation Modelling, 9(1), 28-39.
74. Wang, C. N., Hsu, H. P., & Tran, V. V. (2017). An Improved Dispatching Method (a-HPDB) for Automated Material Handling System with Active Rolling Belt for 450 mm Wafer Fabrication. Applied Sciences, 7(8), 780.
75. Wang, C. N., Wang, J. W., Chou, M. T., Liao, R. Y., & Huang, C. J. (2017). A dispatching method for the lots of different priorities in 450-mm semiconductor manufacturing. Advances in Mechanical Engineering, 9(7), 1687814017713945.
76. Wang, C. N., Wang, Y. H., Hsu, H. P., & Trinh, T. T. (2016). Using Rotacaster in the Heuristic Preemptive Dispatching Method for Conveyor-Based Material Handling of 450 mm Wafer Fabrication. IEEE Transactions on Semiconductor Manufacturing, 29(3), 230-238.
77. Wang, X., & Lu, J. (2010). Research on Control Method of Neural Network for Stacker Crane. In E-Product E-Service and E-Entertainment (ICEEE), 2010 International Conference on (pp. 1-4). IEEE.
78. Wu, C. Q., Luo, J., Tang, H. G., Li, B., & Pan, Y. H. (2009). Cycle-deadlock control of RGV system via Petri net. In Computer Science & Education, 2009. ICCSE′09. 4th International Conference on (pp. 523-528). IEEE.
79. Wu, L. H., Mok, P. Y., & Zhang, J. (2011). An adaptive multi-parameter based dispatching strategy for single-loop interbay material handling systems. Computers in Industry, 62(2), 175-186.
80. Wu, L., Zhang, G., Sun, Y., & Zhang, J. (2010). A fuzzy logic-based and hybrid dispatching policy for interbay material handling system in 300mm semiconductor manufacturing system. In Supply Chain Management and Information Systems (SCMIS), 2010 8th International Conference on (pp. 1-6). IEEE.
81. Yang, T., & Lu, J. C. (2010). A hybrid dynamic pre-emptive and competitive neural-network approach in solving the multi-objective dispatching problem for TFT-LCD manufacturing. International Journal of Production Research, 48(16), 4807-4828.
82. Yang, T., Kuo, Y., Hsieh, C. H., & Ge, W. C. (2016). An exploratory study of virtual cell design for thin-film transistor–liquid crystal display (TFT-LCD) array manufacturing. The International Journal of Advanced Manufacturing Technology, 83(1-4), 633-644.
83. Yao, S., Jiang, Z., Li, N., Geng, N., & Liu, X. (2011). A decentralised multi-objective scheduling methodology for semiconductor manufacturing. International Journal of Production Research, 49(24), 7227-7252.
84. Yim, D. S., & Linnt, R. J. (1993). Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system. The International Journal of Production Research, 31(1), 43-57.
85. Zhang, H., Jiang, Z., & Guo, C. (2009). Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology. The International Journal of Advanced Manufacturing Technology, 41(1), 110-121.
86. Zhou, Q., & Zhou, B. H. (2016). A deadlock recovery strategy for unified automated material handling systems in 300mm wafer fabrications. Computers in Industry, 75, 1-12.
87. Zhou, Y., & Wu, K. (2017, May). Heuristic simulated annealing approach for diffusion scheduling in a semiconductor Fab. In Computer and Information Science (ICIS), 2017 IEEE/ACIS 16th International Conference on (pp. 785-789). IEEE.

相關網站
1. 中華映管, 2017, “ TFT-LCD 基礎技術- TFT 製程介紹, ” Retrieved November 2, 2017,from
http://www.cptt.com.tw/cptt/chinese/index.php?option=com_content&task=view&id=40&Itemid=90.
2. TechNews, 2017, “ 大尺寸面板出貨面積,IHS 估年增6%,” Retrieved September 12, 2017, from
https://technews.tw/2017/09/12/big-size-panel-shipments-prediction/.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明