博碩士論文 105324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.218.245.179
姓名 商君雅(Jun-Ya Shang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 銅對二氧化鈦光觸媒之光催化活性及抗菌性影響
(Photocatalytic activity and antibacterial effectiveness on copper-doped titanium dioxide)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二氧化鈦光觸媒以其卓越的環境自潔能力受到相當大的關注。然而由於其能隙較大,因此半導體材料的光吸收效果及超親水性的轉化僅限於紫外光波段。本研究以過氧化溶膠凝膠法及含浸法製備不同比例之銅/二氧化鈦溶膠及粉末,以浸塗法製備不同比例之銅/二氧化鈦薄膜。本研究目的為研究其於紫外光或可見光下降解亞甲基藍之光催化活性及抗菌效果。光催化活性反應之鑑定以10 ppm亞甲基藍水溶液為光反應標準物,以4支9 W波長為254 nm的紫外光燈管當作紫外光照射光源,並以4支9 W可見光燈管當作可見光照射光源,光降解樣品取樣利用紫外/可見光分光光譜儀分析亞甲基藍濃度。抗菌試驗則測試樣品對大腸桿菌的活性,以4支9 W波長為365 nm的紫外光燈管當作紫外光照射光源,並以4支8 W可見光燈管當作可見光照射光源,照光結束後,培養殘留於樣品上的大腸桿菌,於24小時後以肉眼確認大腸桿菌之菌落數。
利用過氧化溶膠凝膠法製備之銅/二氧化鈦將可以減小二氧化鈦顆粒。摻雜之銅離子會以Cu2+之離子型態存在,Cu2+離子取代二氧化鈦晶格中的Ti4+離子,可增加可見光的吸收,並分離光誘導電子,進一步抑制電子與電洞的再結合。
由光催化降解反應結果顯示利用過氧化溶膠凝膠法製備的銅/二氧化鈦比起含浸法製備的銅/二氧化鈦有更高的光催化效率。銅/二氧化鈦在紫外光與可見光下皆具有較高的光催化活性。從抗菌試驗中,UVA光照射3小時後,銅/二氧化鈦重量比為0.5/100塗層的抗菌效果達到99.99%以上。因此,摻雜了銅的二氧化鈦光觸媒比起純二氧化鈦光觸媒更有活性。
摘要(英) TiO2 based photocatalysts have gained considerable attention owing to the prominent functions of environmental cleaning such as photocatalytic decomposition of pollutants. However, due to the wide band gap of TiO2, its activity is limited to only ultraviolet region. In this study, the Cu-doped TiO2 neutral sols and powders were prepared by peroxo sol-gel method and impregnation method, respectively. The sol was coated on glass by dip-coating technique. This study aimed to investigate the photocatalytic activity for degradation of methylene blue and antibacterial effectiveness under the UV light and visible light irradiation. The photocatalytic activity reaction was carried out in a 10 ppm methylene blue solution with four 9 W 254 nm UVC light as the UV light source or four 9 W visible light as the visible light source. The concentration of methylene blue in the degradation samples were measured by UV-Visible spectrophotometer. The antibacterial activities of the samples were tested against Escherichia coli (ATCC25922) with four 9 W 365 nm UVA light as the UV light source or four 8 W visible light as the visible light source. After irradiation, cultivate Escherichia coli which survived on the samples for 24 h and the numbers of colonies were counted by naked eye.
It was found that doping copper decreased the particle size of TiO2 by peroxo sol-gel method. The copper cations were in the form of Cu2+ ions and were incorporated in TiO2 lattice. Cu2+ ions presented in the substitutional site of Ti4+ in TiO2 lattice are responsible for increasing visible light absorption and causing the segregation of the photo-induced electrons so that it could suppress the recombination of electrons and holes.
Photocatalytic activity results showed that the samples prepared by the peroxo sol-gel method had higher photocatalytic activity than those by the impregnation method. The Cu-doped TiO2 showed a higher photocatalytic activity than the pristine TiO2 under UV light and visible light irradiation and the antibacterial effectiveness of the 0.5 wt.% Cu/TiO2 coating was over 99.99 % after 3 h of irradiation with UVA light. The Cu-doped TiO2 was more active than the pristine TiO2.
關鍵字(中) ★ 二氧化鈦
★ 銅
★ 光觸媒
★ 過氧化溶膠凝膠法
★ 含浸法
★ 光催化降解
★ 抗菌效果
關鍵字(英) ★ Titanium dioxide
★ Cu-doping
★ Photocatalyst
★ Peroxo sol-gel method
★ Impregnation method
★ Photocatalytic degradation
★ Antibacterial effectiveness
論文目次 中文摘要 I
Abstract II
Acknowledgements IV
Table of contents V
List of tables VIII
List of figures X
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Titanium dioxide (TiO2) photocatalysis 3
2.1.1 Structural properties of TiO2 3
2.1.2 Electronic properties of TiO2 6
2.2 Mechanism of TiO2 photocatalysis 8
2.3 Photo-induced high hydrophilicity of TiO2 11
2.4 Modification of TiO2 photocatalysis 14
2.4.1 Transition metal doping 15
2.5 Cu-doped TiO2 as a photocatalyst 16
2.5.1 Mechanism of Cu addition in TiO2 16
2.5.2 Photocatalytic antibacterial effect 17
2.6 Band gap of films 19
Chapter 3 Experimental 22
3.1 Materials 22
3.2 Catalysts preparation 22
3.2.1 Synthesis of Cu/TiO2 sols 22
3.2.2 Synthesis of Cu/P25 powders 24
3.2.3 Preparation of Cu/TiO2 thin films 25
3.3 Catalysts characterization 26
3.3.1 Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM) 26
3.3.2 X-Ray Photoelectron Spectroscopy (XPS) 28
3.3.3 Scanning Electron Microscopy (SEM) 29
3.3.4 X-Ray Diffraction (XRD) 30
3.3.5 Dynamic Light Scanning (DLS) 32
3.3.6 UV-Visible Spectrophotometer 33
3.4 Photocatalytic degradation of methylene blue aqueous solution 33
3.5 Antibacterial activity test 37
Chapter 4 Preparation and characterization of Cu/TiO2 neutral sol by peroxo sol-gel method and its application on photocatalytic degradation of organic pollutants 40
4.1 Abstract 40
4.2 Introduction 40
4.3 Results and discussion 42
4.3.1 Characterization of Cu/TiO2 sols 42
4.3.2 Characterization of Cu/TiO2 thin films 50
4.3.3 Photocatalytic degradation of methylene blue aqueous solution 69
4.4 Conclusions 74
Chapter 5 Cu/TiO2 powder by impregnation method 76
5.1 Abstract 76
5.2 Introduction 76
5.3 Results and discussion 77
5.3.1 Characterization of Cu/P25 powders 77
5.3.2 Photocatalytic degradation of methylene blue aqueous solution 92
5.4 Conclusions 98
Chapter 6 Photocatalytic antibacterial test on Cu/TiO2 thin film 100
6.1 Abstract 100
6.2 Introduction 100
6.3 Results and discussion 101
6.4 Conclusions 107
Chapter 7 Conclusions 109
References 111
參考文獻 Banerjee, S., Dionysiou, D. and Pillai, S. (2015). Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B-Environ., 176-177, 396-428.

Behnajady, M., Shokri, M., Taba, H. and Modirshahla, N. (2013). Photocatalytic activity of Cu doped TiO2 nanoparticles and comparison of two main doping procedures. Micro. Nano. Lett., 8, 345-348.

Boccuzzi, F., Chiorino, A., Martra, G., Gargano, M., Ravasio, N. and Carrozzini, B. (1997). Preparation, Characterization, and Activity of Cu/TiO2 Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2. J. Catal., 165, 129-139.

Chong, M., Jin, B., Chow, C. and Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Res., 44, 2997-3027.

Daghrir, R., Drogui, P. and Robert, D. (2013). Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind. Eng. Chem. Res., 52, 3581-3599.

Fujishima, A., Zhang, X. and Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 63, 515-582.


Ganesh, I., Kumar, P., Annapoorna, I., Sumliner, J., Ramakrishna, M., Hebalkar, N., Padmanabham, G. and Sundararajan, G. (2014). Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci., 293, 229-247.

Guan, K. (2005). Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Tech., 191, 155-160.

Gogniat, G., Thyssen, M., Denis, M., Pulgarin, C. and Dukan, S. (2006). The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol. Lett., 258, 18-24.

Hashimoto, K., Irie, H. and Fujishima, A. (2005). TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys., 44, 8269-8285.

He, C., Yu, Y., Hu, X. and Larbot, A. (2002). Influence of silver doping on the photocatalytic activity of titania films. Appl. Surf. Sci., 200, 239-247.

Irie, H. and Hashimoto, K. (2005). Photocatalytic Active Surfaces and Photo-Induced High Hydrophilicity/High Hydrophobicity. Handbook of Environmental Chemistry, 425-450.

Kong, X., Zeng, C., Wang, X., Huang, J., Li, C., Fei, J., Li, J. and Feng, Q. (2016). Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide. Sci. Rep., 6.

Litter, M. (1999). Heterogeneous photocatalysis Transition metal ions in photocatalytic systems. Appl. Catal. B-Environ., 23, 89-114.

López, R. and Gómez, R. (2011). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Techn. 61, 1-7.

Liu, Z., Ya, J., E, L., Xin, Y. and Zhao, W. (2010). Effect of V doping on the band-gap reduction of porous TiO2 films prepared by sol–gel route. Mater. Chem. Phys., 120, 277-281.

Li, L., Liu, J., Su, Y., Li, G., Chen, X., Qiu, X. and Yan, T. (2009). Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO2:Zn2+ nanocrystals. Nanotechnology, 20, 155706.

Leyland, N., Podporska-Carroll, J., Browne, J., Hinder, S., Quilty, B. and Pillai, S. (2016). Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci. Rep., 6.

Liu, L., John, B., Yeung, K. and Si, G. (2007). Non-UV based germicidal activity of metal-doped TiO2 coating on solid surfaces. J. Environ. Sci., 19, 745-750.

Mor, G., Varghese, O., Wilke, R., Sharma, S., Shankar, K., Latempa, T., Choi, K. and Grimes, C. (2008). p-Type Cu−Ti−O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation. Nano Lett., 8, 3555-3555.

Moongraksathum, B. and Chen, Y. (2017). CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J. Sol-Gel Sci. Techn., 82, 772-782.

Moongraksathum, B. and Chen, Y. (2018). Anatase TiO2 co-doped with silver and ceria for antibacterial application. Catal. Today, 310, 68-74.

Mohamed, M. and Al-Esaimi, M. (2006). Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye. J. Mol. Catal. A-Chem., 255, 53-61.

Nosaka, Y. and Nosaka, A. (2017). Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev., 117, 11302-11336.

Nakata, K. and Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C., 13, 169-189.

Ni, M., Leung, M., Leung, D. and Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev., 11, 401-425.

Park, H., Kim, D., Kim, S. and Lee, K. (2006). The photocatalytic activity of 2.5 wt.% Cu-doped TiO2 nano powders synthesized by mechanical alloying. J. Alloy. Compd., 415, 51-55.

Pelaez, M., Nolan, N., Pillai, S., Seery, M., Falaras, P., Kontos, A., Dunlop, P., Hamilton, J., Byrne, J., O′Shea, K., Entezari, M. and Dionysiou, D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B- Environ., 125, 331-349.

Rahimi, N., Pax, R. and Gray, E. (2016). Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Ch., 44, 86-105.

Sahu, M. and Biswas, P. (2011). Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res. Lett., 6, 441.

Sunada, K., Watanabe, T. and Hashimoto, K. (2003). Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination. Environ. Sci. Technol., 37, 4785-4789.

Sreemany, M. and Sen, S. (2004). A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films. Mater. Chem. Phys., 83, 169-177.

Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K. (2003). Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle. J. Phys. Chem. B, 107, 1028-1035.

Su, J., Li, Z., Zhang, Y., Wei, Y. and Wang, X. (2016). N-Doped and Cu-doped TiO2-B nanowires with enhanced photoelectrochemical activity. RSC Adv., 6, 16177-16182.

Sangchay, W., Sikong, L. and Kooptarnond, K. (2012). Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles. Procedia Engineer., 32, 590-596.

Teh, C. and Mohamed, A. (2011). Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloy. Compd., 509, 1648-1660.
Tseng, I., Wu, J. and Chou, H. (2004). Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal., 221, 432-440.

Tauc, J., Grigorovici, R. and Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi, 15, 627-637.

Vinodgopal, K., Wynkoop, D. and Kamat, P. (1996). Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environ. Sci. Technol., 30, 1660-1666.

Verdier, T., Coutand, M., Bertron, A. and Roques, C. (2014). Antibacterial Activity of TiO2 Photocatalyst Alone or in Coatings on E. coli: The Influence of Methodological Aspects. Coatings, 4, 670-686.

Watanabe, T., Fukayama, S., Miyauchi, M., Fujishima, A. and Hashimoto, K. (2000). Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass. J. Sol-Gel Sci. Techn., 19, 71-76.

Wang, S., Meng, K., Zhao, L., Jiang, Q. and Lian, J. (2014). Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceram. Int., 40, 5107-5110.

Yu, J., Ho, W., Lin, J., Yip, H. and Wong, P. (2003). Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate. Environ. Sci. Technol., 37, 2296-2301.

Zhong J, Li JZ, Feng F, Huang S, Jiang W, et al. (2013) Ionic Liquid-Assisted Fabrication of Nanoscale Microporous TiO2 with Enhanced Photocatalytic Performance. JSM Nanotechnol. Nano., 1, 1015.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2018-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明