參考文獻 |
Banerjee, S., Dionysiou, D. and Pillai, S. (2015). Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B-Environ., 176-177, 396-428.
Behnajady, M., Shokri, M., Taba, H. and Modirshahla, N. (2013). Photocatalytic activity of Cu doped TiO2 nanoparticles and comparison of two main doping procedures. Micro. Nano. Lett., 8, 345-348.
Boccuzzi, F., Chiorino, A., Martra, G., Gargano, M., Ravasio, N. and Carrozzini, B. (1997). Preparation, Characterization, and Activity of Cu/TiO2 Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2. J. Catal., 165, 129-139.
Chong, M., Jin, B., Chow, C. and Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Res., 44, 2997-3027.
Daghrir, R., Drogui, P. and Robert, D. (2013). Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind. Eng. Chem. Res., 52, 3581-3599.
Fujishima, A., Zhang, X. and Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 63, 515-582.
Ganesh, I., Kumar, P., Annapoorna, I., Sumliner, J., Ramakrishna, M., Hebalkar, N., Padmanabham, G. and Sundararajan, G. (2014). Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci., 293, 229-247.
Guan, K. (2005). Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Tech., 191, 155-160.
Gogniat, G., Thyssen, M., Denis, M., Pulgarin, C. and Dukan, S. (2006). The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol. Lett., 258, 18-24.
Hashimoto, K., Irie, H. and Fujishima, A. (2005). TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys., 44, 8269-8285.
He, C., Yu, Y., Hu, X. and Larbot, A. (2002). Influence of silver doping on the photocatalytic activity of titania films. Appl. Surf. Sci., 200, 239-247.
Irie, H. and Hashimoto, K. (2005). Photocatalytic Active Surfaces and Photo-Induced High Hydrophilicity/High Hydrophobicity. Handbook of Environmental Chemistry, 425-450.
Kong, X., Zeng, C., Wang, X., Huang, J., Li, C., Fei, J., Li, J. and Feng, Q. (2016). Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide. Sci. Rep., 6.
Litter, M. (1999). Heterogeneous photocatalysis Transition metal ions in photocatalytic systems. Appl. Catal. B-Environ., 23, 89-114.
López, R. and Gómez, R. (2011). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Techn. 61, 1-7.
Liu, Z., Ya, J., E, L., Xin, Y. and Zhao, W. (2010). Effect of V doping on the band-gap reduction of porous TiO2 films prepared by sol–gel route. Mater. Chem. Phys., 120, 277-281.
Li, L., Liu, J., Su, Y., Li, G., Chen, X., Qiu, X. and Yan, T. (2009). Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO2:Zn2+ nanocrystals. Nanotechnology, 20, 155706.
Leyland, N., Podporska-Carroll, J., Browne, J., Hinder, S., Quilty, B. and Pillai, S. (2016). Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci. Rep., 6.
Liu, L., John, B., Yeung, K. and Si, G. (2007). Non-UV based germicidal activity of metal-doped TiO2 coating on solid surfaces. J. Environ. Sci., 19, 745-750.
Mor, G., Varghese, O., Wilke, R., Sharma, S., Shankar, K., Latempa, T., Choi, K. and Grimes, C. (2008). p-Type Cu−Ti−O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation. Nano Lett., 8, 3555-3555.
Moongraksathum, B. and Chen, Y. (2017). CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J. Sol-Gel Sci. Techn., 82, 772-782.
Moongraksathum, B. and Chen, Y. (2018). Anatase TiO2 co-doped with silver and ceria for antibacterial application. Catal. Today, 310, 68-74.
Mohamed, M. and Al-Esaimi, M. (2006). Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye. J. Mol. Catal. A-Chem., 255, 53-61.
Nosaka, Y. and Nosaka, A. (2017). Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev., 117, 11302-11336.
Nakata, K. and Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C., 13, 169-189.
Ni, M., Leung, M., Leung, D. and Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev., 11, 401-425.
Park, H., Kim, D., Kim, S. and Lee, K. (2006). The photocatalytic activity of 2.5 wt.% Cu-doped TiO2 nano powders synthesized by mechanical alloying. J. Alloy. Compd., 415, 51-55.
Pelaez, M., Nolan, N., Pillai, S., Seery, M., Falaras, P., Kontos, A., Dunlop, P., Hamilton, J., Byrne, J., O′Shea, K., Entezari, M. and Dionysiou, D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B- Environ., 125, 331-349.
Rahimi, N., Pax, R. and Gray, E. (2016). Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Ch., 44, 86-105.
Sahu, M. and Biswas, P. (2011). Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res. Lett., 6, 441.
Sunada, K., Watanabe, T. and Hashimoto, K. (2003). Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination. Environ. Sci. Technol., 37, 4785-4789.
Sreemany, M. and Sen, S. (2004). A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films. Mater. Chem. Phys., 83, 169-177.
Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K. (2003). Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle. J. Phys. Chem. B, 107, 1028-1035.
Su, J., Li, Z., Zhang, Y., Wei, Y. and Wang, X. (2016). N-Doped and Cu-doped TiO2-B nanowires with enhanced photoelectrochemical activity. RSC Adv., 6, 16177-16182.
Sangchay, W., Sikong, L. and Kooptarnond, K. (2012). Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles. Procedia Engineer., 32, 590-596.
Teh, C. and Mohamed, A. (2011). Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloy. Compd., 509, 1648-1660.
Tseng, I., Wu, J. and Chou, H. (2004). Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal., 221, 432-440.
Tauc, J., Grigorovici, R. and Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi, 15, 627-637.
Vinodgopal, K., Wynkoop, D. and Kamat, P. (1996). Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environ. Sci. Technol., 30, 1660-1666.
Verdier, T., Coutand, M., Bertron, A. and Roques, C. (2014). Antibacterial Activity of TiO2 Photocatalyst Alone or in Coatings on E. coli: The Influence of Methodological Aspects. Coatings, 4, 670-686.
Watanabe, T., Fukayama, S., Miyauchi, M., Fujishima, A. and Hashimoto, K. (2000). Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass. J. Sol-Gel Sci. Techn., 19, 71-76.
Wang, S., Meng, K., Zhao, L., Jiang, Q. and Lian, J. (2014). Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceram. Int., 40, 5107-5110.
Yu, J., Ho, W., Lin, J., Yip, H. and Wong, P. (2003). Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate. Environ. Sci. Technol., 37, 2296-2301.
Zhong J, Li JZ, Feng F, Huang S, Jiang W, et al. (2013) Ionic Liquid-Assisted Fabrication of Nanoscale Microporous TiO2 with Enhanced Photocatalytic Performance. JSM Nanotechnol. Nano., 1, 1015. |