博碩士論文 105324051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.147.85.61
姓名 吳孟威(Meng-Wei Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以熱力學的觀點探討鈉離子與錯誤鹼基配對在一般核酸和中性DNA雜交形成雙 股螺旋之機制
(The thermodynamic aspects of the Na+ and the mismatch discrimination on the formation of double stranded DNA containing site-specific methyl phosphotriester linkages)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,隨著生物技術的進步,核酸類似物例如:Locked nucleic acid(LNA)、Peptide nucleic acid(PNA)等成為新型生物技術應用於分子檢測的理想選擇。為了增加檢測的專一性與辨識性,我們實驗室發展一種新的電中性核酸類似物,phosphate-methylated DNA,並將其簡稱為nDNA。nDNA磷酸骨幹上不同核苷酸間的氧可以選擇性地經由甲基化(-CH3),使帶負電的磷酸二酯鍵(O=P-O-,phosphodiester linkages)轉變成磷酸三酯鍵(O=P-O-CH3,methyl phosphotriester linkages)而成為電中性。此甲基化結果會使nDNA和其互補股核酸之間的靜電排斥力下降,而增加雙股的穩定性,但同時nDNA磷酸骨幹上的甲基也會在雙股螺旋形成時導致立體障礙的影響產生,並使結構不穩定。依此,就有機會藉由改變特定甲基化位置及不同數目,我們就能選擇與控制nDNA和互補股DNA雜交之性質,以為特定功能使用。
實驗結果方面,根據電泳我們可以分辨出不同數目nDNA的帶電量,並且證實nDNA能夠與一般DNA形成雜交,且circular dichroism spectroscopy(CD)的量測結果發現在波長275nm時出現一正峰,在245nm時出現負峰,指出nDNA和一般DNA雜交仍會形成B-form結構,值得注意的是我們藉由恆溫滴定微卡計(ITC)和melting temperature(Tm)的量測發現nDNA與一般DNA雜交,有可能會使雙股螺旋不穩定。而從∆G和Na+的斜率可以看到當雙股螺旋形成時,一般需要大量鹽離子以穩定結構,但若將其中一股換成nDNA能夠使Na+的吸收減少,同時我們也從熱力學參數探討無論是鈉離子或者是修飾甲基對於遮蔽磷酸骨幹上負電荷的影響,這一方面也使我們更加了解nDNA與其互補股之間的雜交機制。
最後,文獻指出辨識SNP特別是在GC-rich的序列是十分困難的,因為perfect match和mismatch之間的Tm值差異很小,所以我們選用了C型肝炎的其中一種分型(HCV-3b)當作目標物,此一序列為GC含量75%的序列,藉由改變nDNA修飾的位置與間隔不同鹼基數目修飾nDNA,發現間隔兩個鹼基設計nDNA或者是將nDNA設計在mismatch周圍,都能提高∆Tm,使得辨識能力上升,提供最佳化之設計的參考。
摘要(英) For the upsurging needs of disease detection and genetic analysis, the uses of synthetic DNA containing modified nucleotides such as LNA or PNA are becoming desired for novel biotech applications. To enhance the specificity of detections, we used newly developed DNA oligonucleotide (nDNA), which contains site-specific neutral internucleoside methyl phosphotriester (MPTE) linkages. The electrostatic repulsion between nDNA and its complementary strand may decrease and enhance the duplex formation. However, the methyl group of MPTEs may sterically hinder duplex formation and destabilize the duplexes. Therefore, the uses of nDNA offer additional elements of maneuvering the stability of nucleic acid duplexes. Here we used gel electrophoresis to examine the charges of the obtained nDNA, CD measurements showed that nDNA and complementary native DNA exhibited a positive peak at 275nm and a negative peak at 245nm which mainly in B-form duplexes. Surprisingly we found that nDNA destabilized the formation of DNA duplexes by using a calorimeter and Tm measurements. Slope of ∆G vs [Na+] showed that methylation of backbone phosphates leads to a lower uptake of Na+ in hybridization. We also revealed the contrary thermodynamic effects of reducing inter-stand negative-charge repulsion by shielding with sodium cations and by neutralizing the backbone negative charge with methyl groups. These later discoveries provide understanding the driving forces of formation of nucleic acid duplexes with modified nucleotides and its applications. Lastly, nDNA were applied to discriminate oligonucleotides of single-nucleotide polymorphism (SNP), Studies showed that discriminating SNP especially in GC-rich regions is often difficult because of the small difference between the melting temperature of the perfect match and the mismatch. So we chose HCV-3b which is one of the HCV genotypes as the target, by introducing different position and different density of the nDNA modification, we tried to find optimized nDNA design that can enhance the discrimination ability.
關鍵字(中) ★ 恆溫滴定微卡計
★ 結合機制
★ 單一核苷酸多型性
★ 核酸分子
★ GC 含量
關鍵字(英) ★ isothermal titration calorimetry
★ binding mechanism
★ single nucleotide polymorphism
★ nucleic acid
★ GC content
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 xiv
表目錄 xvii
第一章 緒論 1
第二章 文獻回顧 3
2.1 核酸分子 3
2.1.1 去氧核醣核酸結構 5
2.1.2核醣核酸結構 7
2.1.3 鹼基含量之研究 8
2.2 核酸類似物 9
2.2.1 肽核酸 9
2.2.2 鎖核酸 11
2.2.3嗎啉基寡核苷酸 13
2.2.4 中性去氧核醣核酸 14
2.3 單一核苷酸多型性 18
2.3.1 SNP簡介 18
2.3.2 錯誤配對辨識能力之研究 19
2-4核酸分子雜交熱力學機制之研究 20
2.4.1 恆溫滴定微卡計 21
2.4.2 圓二色光譜儀 24
2.4.3 SYBR green 25
第三章 實驗藥品、儀器設備與方法 27
3.1 實驗藥品 27
3.2 儀器設備 29
3.3 實驗方法 30
3.3.1 nDNA之質譜分析與保存方法 30
3.3.1 PAGE電泳 32
3.3.2 離子交換層析法 33
3.3.3 圓二色光譜儀實驗 34
3.3.4 恆溫滴定微卡計實驗 35
3.3.5 SYBR Green 螢光熔點測量儀實驗 38
第四章 結果與討論 40
4.1修飾不同數目nDNA之電荷量探討 40
4.1.1 以凝膠電泳判別電荷量 40
4.1.2 以離子交換層析法判別電荷量 43
4-2 nDNA與鹽離子(Na+)關係之探討 44
4-2-1鹽濃度及nDNA修飾數目對雙股螺旋二級結構之影響 45
4-2-2 以熱力學的觀點探討nDNA與鹽離子(Na+)之關係 47
4-2-3 焓熵補償效應 53
4-3 不同nDNA修飾辨識錯誤鹼基配對之能力 54
4-3-1 RNA/DNA與RNA/nDNA雜交之二級結構影響 55
4-3-2 nDNA鄰近效應之探討 57
4-3-3 nDNA修飾不同位置之探討 62
4-3-4 改變鹽濃度 68
第五章 結論與未來展望 72
5.1 結論 72
5.2 未來展望 74
第六章 參考文獻 75
附錄 Appendixes 83
參考文獻 1. Dahm, R., Friedrich Miescher and the discovery of DNA. Dev Biol, 2005. 278(2): p. 274-88.
2. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-8.
3. Collins, F.S., A. Patrinos, E. Jordan, A. Chakravarti, R. Gesteland, and L. Walters, New goals for the U.S. Human Genome Project: 1998-2003. Science, 1998. 282(5389): p. 682-9.
4. Mandelkern, M., J.G. Elias, D. Eden, and D.M. Crothers, The dimensions of DNA in solution. J Mol Biol, 1981. 152(1): p. 153-61.
5. Wing, R., H. Drew, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R.E. Dickerson, Crystal structure analysis of a complete turn of B-DNA. Nature, 1980. 287(5784): p. 755-8.
6. Leslie, A.G., S. Arnott, R. Chandrasekaran, and R.L. Ratliff, Polymorphism of DNA double helices. J Mol Biol, 1980. 143(1): p. 49-72.
7. Wahl, M.C. and M. Sundaralingam, Crystal structures of A-DNA duplexes. Biopolymers, 1997. 44(1): p. 45-63.
8. Lu, X.J., Z. Shakked, and W.K. Olson, A-form conformational motifs in ligand-bound DNA structures. J Mol Biol, 2000. 300(4): p. 819-40.
9. Herbert, A. and A. Rich, The biology of left-handed Z-DNA. J Biol Chem, 1996. 271(20): p. 11595-8.
10. Wang, A.H.J., G.J. Quigley, F.J. Kolpak, J.L. Crawford, J.H. van Boom, G. van der Marel, and A. Rich, Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 1979. 282: p. 680.
11. Jacobsen, N., J. Bentzen, M. Meldgaard, M.H. Jakobsen, M. Fenger, S. Kauppinen, and J. Skouv, LNA-enhanced detection of single nucleotide polymorphisms in the apolipoprotein E. Nucleic Acids Res, 2002. 30(19): p. e100.
12. Tan, M.H., J. Gecz, and C. Shoubridge, PCR amplification and sequence analysis of GC-rich sequences: Aristaless-related homeobox example. Methods Mol Biol, 2013. 1017: p. 105-20.
13. Wilson, A.G., J.A. Symons, T.L. McDowell, H.O. McDevitt, and G.W. Duff, Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3195-9.
14. Mamedov, T.G., E. Pienaar, S.E. Whitney, J.R. TerMaat, G. Carvill, R. Goliath, A. Subramanian, and H.J. Viljoen, A fundamental study of the PCR amplification of GC-rich DNA templates. Comput Biol Chem, 2008. 32(6): p. 452-7.
15. Yun, Z., B. Johansson, O. Weiland, and A. Sonnerborg, Genotyping of hepatitis C virus performed by type-specific PCR in comparison to nucleotide sequencing of NS5 and core regions. Res Virol, 1997. 148(3): p. 233-7.
16. Nielsen, P.E., M. Egholm, R.H. Berg, and O. Buchardt, Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991. 254(5037): p. 1497-500.
17. Nielsen, P.E., Peptide nucleic acid (PNA) from DNA recognition to antisense and DNA structure. Biophys Chem, 1997. 68(1-3): p. 103-8.
18. Egholm, M., O. Buchardt, L. Christensen, C. Behrens, S.M. Freier, D.A. Driver, R.H. Berg, S.K. Kim, B. Norden, and P.E. Nielsen, PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 1993. 365(6446): p. 566-8.
19. Tomac, S., M. Sarkar, T. Ratilainen, P. Wittung, P.E. Nielsen, B. Norden, and A. Graslund, Ionic effects on the stability and conformation of peptide nucleic acid complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
20. Ray, A. and B. Norden, Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J, 2000. 14(9): p. 1041-60.
21. Wang, J., E. Palecek, P.E. Nielsen, G. Rivas, X. Cai, H. Shiraishi, N. Dontha, D. Luo, and P.A.M. Farias, Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors. Journal of the American Chemical Society, 1996. 118(33): p. 7667-7670.
22. Obika, S., D. Nanbu, Y. Hari, K.-i. Morio, Y. In, T. Ishida, and T. Imanishi, Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
23. Bondensgaard, K., M. Petersen, S.K. Singh, V.K. Rajwanshi, R. Kumar, J. Wengel, and J.P. Jacobsen, Structural studies of LNA:RNA duplexes by NMR: conformations and implications for RNase H activity. Chemistry, 2000. 6(15): p. 2687-95.
24. Wengel, J., M. Petersen, K.E. Nielsen, G.A. Jensen, A.E. Hakansson, R. Kumar, M.D. Sorensen, V.K. Rajwanshi, T. Bryld, and J.P. Jacobsen, LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids, 2001. 20(4-7): p. 389-96.
25. Fakhfakh, K., O. Marais, X. Bo Justin Cheng, J. Real Castañeda, C. Hughesman, and C. Haynes, Molecular thermodynamics of LNA:LNA base pairs and the hyperstabilizing effect of 5′-proximal LNA:DNA base pairs. Vol. 61. 2015.
26. You, Y., B.G. Moreira, M.A. Behlke, and R. Owczarzy, Design of LNA probes that improve mismatch discrimination. Nucleic Acids Research, 2006. 34(8).
27. Summerton, J. and D. Weller, Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev, 1997. 7(3): p. 187-95.
28. Summerton, J., Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta, 1999. 1489(1): p. 141-58.
29. Koole, L.H., H.M. Moody, N.L.H.L. Broeders, P.J.L.M. Quaedflieg, W.H.A. Kuijpers, M.H.P. Van Genderen, A.J.J.M. Coenen, S. Van der Wal, and H.M. Buck, Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
30. Kuijpers, W.H., J. Huskens, L.H. Koole, and C.A. van Boeckel, Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic Acids Res, 1990. 18(17): p. 5197-205.
31. Miller, P.S., K.N. Fang, N.S. Kondo, and P.O. Ts′o, Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc, 1971. 93(24): p. 6657-65.
32. Moody, H.M., M.H. van Genderen, L.H. Koole, H.J. Kocken, E.M. Meijer, and H.M. Buck, Regiospecific inhibition of DNA duplication by antisense phosphate-methylated oligodeoxynucleotides. Nucleic Acids Res, 1989. 17(12): p. 4769-82.
33. Miller, P.S., L.T. Braiterman, and P.O. Ts′o, Effects of a trinucleotide ethyl phosphotriester, Gmp(Et)Gmp(Et)U, on mammalian cells in culture. Biochemistry, 1977. 16(9): p. 1988-96.
34. Moody, H.M., P.J. Quaedflieg, L.H. Koole, M.H. van Genderen, H.M. Buck, L. Smit, S. Jurriaans, J.L. Geelen, and J. Goudsmit, Inhibition of HIV-1 infectivity by phosphate-methylated DNA: retraction. Science, 1990. 250(4977): p. 125-6.
35. van Genderen, M.H.P., L.H. Koole, and H.M. Buck, Hybridization of phosphate-methylated DNA and natural oligonucleotides. Implications for protein-induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 1989. 108(1): p. 28-35.
36. Chang, Y.-H. and W.-Y. Chen, Specificity enhancement of PCR and qPCR bu using neutralized DNA(nDNA) as primer or targeting probe. 2017.
37. Buck, H.M., L.H. Koole, M.H. van Genderen, L. Smit, J.L. Geelen, S. Jurriaans, and J. Goudsmit, Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity. Science, 1990. 248(4952): p. 208-12.
38. M. Buck, H., Modified RNA with a Phosphate-Methylated Backbone. A Serious Omission in Our (Retracted) Study at HIV-1 RNA Loops and Integrated DNA. Specific Properties of the (Modified) RNA and DNA Dimers. Vol. 07. 2016. 30-41.
39. Li, T.-L. and W.-Y. Chen, MicroRNA In Situ Hybridization with Phosphate-methylated oligonucleotides (nDNA) Probe. 2018.
40. Stoneking, M., Single nucleotide polymorphisms. From the evolutionary past. Nature, 2001. 409(6822): p. 821-2.
41. Cargill, M., D. Altshuler, J. Ireland, P. Sklar, K. Ardlie, N. Patil, N. Shaw, C.R. Lane, E.P. Lim, N. Kalyanaraman, J. Nemesh, L. Ziaugra, L. Friedland, A. Rolfe, J. Warrington, R. Lipshutz, G.Q. Daley, and E.S. Lander, Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet, 1999. 22(3): p. 231-8.
42. Chou, L.S., C. Meadows, C.T. Wittwer, and E. Lyon, Unlabeled oligonucleotide probes modified with locked nucleic acids for improved mismatch discrimination in genotyping by melting analysis. Biotechniques, 2005. 39(5): p. 644, 646, 648 passim.
43. Du, H., C.M. Strohsahl, J. Camera, B.L. Miller, and T.D. Krauss, Sensitivity and Specificity of Metal Surface-Immobilized “Molecular Beacon” Biosensors. Journal of the American Chemical Society, 2005. 127(21): p. 7932-7940.
44. Owczarzy, R., Y. You, C.L. Groth, and A.V. Tataurov, Stability and mismatch discrimination of locked nucleic acid-DNA duplexes. Biochemistry, 2011. 50(43): p. 9352-67.
45. Ratilainen, T., A. Holmen, E. Tuite, P.E. Nielsen, and B. Norden, Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry, 2000. 39(26): p. 7781-7791.
46. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes Dev, 2004. 18(5): p. 504-11.
47. Clanton-Arrowood, K., J. McGurk, and S.J. Schroeder, 3 ′ Terminal Nucleotides Determine Thermodynamic Stabilities of Mismatches at the Ends of RNA Helices. Biochemistry, 2008. 47(50): p. 13418-13427.
48. Kankia, B.I., D.W. Kupke, and L.A. Marky, The incorporation of a platinated cross-link into duplex DNA yields an uptake of structural water. Journal of Physical Chemistry B, 2001. 105(46): p. 11402-11405.
49. Jana, B., S. Pal, P.K. Maiti, S.T. Lin, J.T. Hynes, and B. Bagchi, Entropy of water in the hydration layer of major and minor grooves of DNA. Journal of Physical Chemistry B, 2006. 110(39): p. 19611-19618.
50. Lin, F.Y., W.Y. Chen, and M.T.W. Hearn, Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: Effects of salts, hydrophobicity of the sorbent, and structure of the protein. Analytical Chemistry, 2001. 73(16): p. 3875-3883.
51. Florian, J., J. Sponer, and A. Warshel, Thermodynamic parameters for stacking and hydrogen bonding of nucleic acid bases in aqueous solution: Ab initio/Langevin dipoles study. Journal of Physical Chemistry B, 1999. 103(5): p. 884-892.
52. Soto, A.M., B.I. Kankia, P. Dande, B. Gold, and L.A. Marky, Thermodynamic and hydration effects for the incorporation of a cationic 3-aminopropyl chain into DNA. Nucleic Acids Research, 2002. 30(14): p. 3171-3180.
53. Ponnuswamy, P.K. and M.M. Gromiha, On the conformational stability of oligonucleotide duplexes and tRNA molecules. J Theor Biol, 1994. 169(4): p. 419-32.
54. Ladbury, J.E., Application of isothermal titration calorimetry in the biological sciences: things are heating up! Biotechniques, 2004. 37(6): p. 885-7.
55. Lees, J.G., A.J. Miles, F. Wien, and B.A. Wallace, A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics, 2006. 22(16): p. 1955-62.
56. Kypr, J., I. Kejnovska, D. Renciuk, and M. Vorlickova, Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res, 2009. 37(6): p. 1713-25.
57. Vorlickova, M., I. Kejnovska, K. Bednarova, D. Renciuk, and J. Kypr, Circular dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality, 2012. 24(9): p. 691-8.
58. Zipper, H., H. Brunner, J. Bernhagen, and F. Vitzthum, Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res, 2004. 32(12): p. e103.
59. Dragan, A.I., R. Pavlovic, J.B. McGivney, J.R. Casas-Finet, E.S. Bishop, R.J. Strouse, M.A. Schenerman, and C.D. Geddes, SYBR Green I: fluorescence properties and interaction with DNA. J Fluoresc, 2012. 22(4): p. 1189-99.
60. Meade, B.R., K. Gogoi, A.S. Hamil, C. Palm-Apergi, A. van den Berg, J.C. Hagopian, A.D. Springer, A. Eguchi, A.D. Kacsinta, C.F. Dowdy, A. Presente, P. Lonn, M. Kaulich, N. Yoshioka, E. Gros, X.S. Cui, and S.F. Dowdy, Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nature Biotechnology, 2014. 32(12): p. 1256-U122.
61. Kuijpers, W.H.A., J. Huskens, L.H. Koole, and C.A.A. Vanboeckel, Synthesis of Well-Defined Phosphate-Methylated DNA Fragments - the Application of Potassium Carbonate in Methanol as Deprotecting Reagent. Nucleic Acids Research, 1990. 18(17): p. 5197-5205.
62. Nakano, S., M. Fujimoto, H. Hara, and N. Sugimoto, Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res, 1999. 27(14): p. 2957-65.
63. Mikulecky, P.J. and A.L. Feig, Heat capacity changes associated with DNA duplex formation: salt- and sequence-dependent effects. Biochemistry, 2006. 45(2): p. 604-16.
64. Lang, B.E. and F.P. Schwarz, Thermodynamic dependence of DNA/DNA and DNA/RNA hybridization reactions on temperature and ionic strength. Biophys Chem, 2007. 131(1-3): p. 96-104.
65. Petruska, J., M.F. Goodman, M.S. Boosalis, L.C. Sowers, C. Cheong, and I. Tinoco, Jr., Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci U S A, 1988. 85(17): p. 6252-6.
66. Gilbert, S.D., C.D. Stoddard, S.J. Wise, and R.T. Batey, Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J Mol Biol, 2006. 359(3): p. 754-68.
67. Bishop, G.R., J. Ren, B.C. Polander, B.D. Jeanfreau, J.O. Trent, and J.B. Chaires, Energetic basis of molecular recognition in a DNA aptamer. Biophysical Chemistry, 2007. 126(1): p. 165-175.
68. Petruska, J. and M.F. Goodman, Enthalpy-entropy compensation in DNA melting thermodynamics. J Biol Chem, 1995. 270(2): p. 746-50.
69. Pan, A., T. Kar, A.K. Rakshit, and S.P. Moulik, Enthalpy-Entropy Compensation (EEC) Effect: Decisive Role of Free Energy. J Phys Chem B, 2016.
70. Ugozzoli, L.A., D. Latorra, R. Puckett, K. Arar, and K. Hamby, Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Anal Biochem, 2004. 324(1): p. 143-52.
71. Johnson, M.P., L.M. Haupt, and L.R. Griffiths, Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Res, 2004. 32(6): p. e55.
72. Mouritzen, P., A.T. Nielsen, H.M. Pfundheller, Y. Choleva, L. Kongsbak, and S. Moller, Single nucleotide polymorphism genotyping using locked nucleic acid (LNA). Expert Rev Mol Diagn, 2003. 3(1): p. 27-38.
73. Du, H., C.M. Strohsahl, J. Camera, B.L. Miller, and T.D. Krauss, Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. J Am Chem Soc, 2005. 127(21): p. 7932-40.
74. Chayama, K., Genotyping Hepatitis C Virus by Type-Specific Primers for PCR Based on NS5 Region. Methods Mol Med, 1999. 19: p. 165-73.
75. Harris, S.A., Z.A. Sands, and C.A. Laughton, Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA. Biophys J, 2005. 88(3): p. 1684-91.
76. Huang, C.-J., Z.-E. Lin, Y.-S. Yang, H.W.-H. Chan, and W.-Y. Chen, Neutralized chimeric DNA probe for detection of single nucleotide polymorphism on surface plasmon resonance biosensor. Biosensors and Bioelectronics, 2018. 99: p. 170-175.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2018-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明