參考文獻 |
1. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108 (46), 17886-17892.
2. Hung, C. T.; Yu, N. Y.; Chen, C. T.; Wu, P. H.; Han, X. X.; Kao, Y. S.; Liu, T. C.; Chu, Y. Y.; Deng, F.; Zheng, A. M.; Liu, S. B., Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2014, 2 (47), 20030-20037.
3. Feng, S.; Dos Santos, M. C.; Carvalho, B. R.; Lv, R.; Li, Q.; Fujisawa, K.; Elias, A. L.; Lei, Y.; Perea-Lopez, N.; Endo, M.; Pan, M.; Pimenta, M. A.; Terrones, M., Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Sci. Adv. 2016, 2 (7), e1600322.
4. Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society 2009, 131 (29), 9890-1.
5. Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z., Can graphene be used as a substrate for Raman enhancement? Nano Letters 2010, 10 (2), 553-61.
6. Lv, R.; Li, Q.; Botello-Mendez, A. R.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q.; Elias, A. L.; Cruz-Silva, R.; Gutierrez, H. R.; Kim, Y. A.; Muramatsu, H.; Zhu, J.; Endo, M.; Terrones, H.; Charlier, J. C.; Pan, M.; Terrones, M., Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci. Rep. 2012, 2, 586.
7. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3), 183-91.
8. Xu, W.; Mao, N.; Zhang, J., Graphene: a platform for surface-enhanced Raman spectroscopy. Small 2013, 9 (8), 1206-24.
9. Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y., Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4 (4), 1790-8.
10. Hassan, F. M.; Chabot, V.; Li, J. D.; Kim, B. K.; Ricardez-Sandoval, L.; Yu, A. P., Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 2013, 1 (8), 2904-2912.
11. Qu, L.; Liu, Y.; Baek, J. B.; Dai, L., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4 (3), 1321-6.
12. Zhang, N.; Tong, L. M.; Zhang, J., Graphene-Based Enhanced Raman Scattering toward Analytical Applications. Chemistry of Materials 2016, 28 (18), 6426-6435.
13. Zhang, L.; Niu, J.; Dai, L.; Xia, Z., Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 2012, 28 (19), 7542-50.
14. Sun, X. X.; Li, K.; Yin, C.; Wang, Y.; He, F.; Bai, X. W.; Tang, H.; Wu, Z. J., The oxygen reduction reaction mechanism on Sn doped graphene as an electrocatalyst in fuel cells: a DFT study. RSC Adv. 2017, 7 (2), 729-734.
15. Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. a.; Huang, S., Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2011, 6 (1), 205-211.
16. Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y., Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Advanced Materials 2013, 25 (35), 4932-7.
17. Kattel, S.; Atanassov, P.; Kiefer, B., A density functional theory study of oxygen reduction reaction on non-PGM Fe-Nx-C electrocatalysts. Physical Chemistry Chemical Physics 2014, 16 (27), 13800-6.
18. Kabir, S.; Artyushkova, K.; Kiefer, B.; Atanassov, P., Computational and experimental evidence for a new TM-N3/C moiety family in non-PGM electrocatalysts. Physical Chemistry Chemical Physics 2015, 17 (27), 17785-9.
19. Bai, X.; Zhao, E.; Wang, W.; Wang, Y.; Li, K.; Lin, L.; Yang, J.; Sun, H.; Wu, Z., A direct four-electron process on Fe–N3 doped graphene for the oxygen reduction reaction: a theoretical perspective. RSC Adv. 2017, 7 (38), 23812-23819.
20. Rudenko, A. N.; Keil, F. J.; Katsnelson, M. I.; Lichtenstein, A. I., Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study. Phys. Rev. B 2010, 82 (3), 035427.
21. Tristant, D.; Puech, P.; Gerber, I. C., Theoretical Study of Graphene Doping Mechanism by Iodine Molecules. Journal of Physical Chemistry C 2015, 119 (21), 12071-12078.
22. Steele, B. C.; Heinzel, A., Materials for fuel-cell technologies. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific: 2011; pp 224-231.
23. She, Y.; Chen, J.; Zhang, C.; Lu, Z.; Ni, M.; Sit, P. H.-L.; Leung, M. K., Oxygen Reduction Reaction Mechanism of Nitrogen-Doped Graphene Derived from Ionic Liquid. Energy Procedia 2017, 142, 1319-1326.
24. Lv, R.; dos Santos, M. C.; Antonelli, C.; Feng, S.; Fujisawa, K.; Berkdemir, A.; Cruz-Silva, R.; Elias, A. L.; Perea-Lopez, N.; Lopez-Urias, F.; Terrones, H.; Terrones, M., Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing. Advanced Materials 2014, 26 (45), 7593-9.
25. Park, W. H.; Jung, M., Out-of-Plane Directional Charge Transfer-Assisted Chemical Enhancement in the Surface-Enhanced Raman Spectroscopy of a Graphene Monolayer. Journal of Physical Chemistry C 2016, 120 (42), 24354-24359.
26. Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M. S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J., Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (24), 9281-6.
27. Turley, H. K.; Hu, Z.; Jensen, L.; Camden, J. P., Surface-Enhanced Resonance Hyper-Raman Scattering Elucidates the Molecular Orientation of Rhodamine 6G on Silver Colloids. J. Phys. Chem. Lett. 2017, 8 (8), 1819-1823.
28. Jensen, L.; Schatz, G. C., Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. Journal of Physical Chemistry A 2006, 110 (18), 5973-7.
29. Watanabe, H.; Hayazawa, N.; Inouye, Y.; Kawata, S., DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. J. Phys. Chem. B 2005, 109 (11), 5012-20.
30. Huang, C. S.; Kim, M.; Wong, B. M.; Safron, N. S.; Arnold, M. S.; Gopalan, P., Raman Enhancement of a Dipolar Molecule on Graphene. Journal of Physical Chemistry C 2014, 118 (4), 2077-2084.
31. Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. science 2016, 351 (6271), 361-5.
32. Song, C.; Zhang, J., Electrocatalytic oxygen reduction reaction. In PEM fuel cell electrocatalysts and catalyst layers, Springer: 2008; pp 89-134.
33. Zhang, J.; Xia, Z.; Dai, L., Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1 (7), e1500564.
34. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z., Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. Journal of the American Chemical Society 2014, 136 (11), 4394-403.
35. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R., Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed.
2005, 44 (14), 2132-5.
36. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6 (3), 241-7.
37. Lee, D. H.; Lee, W. J.; Lee, W. J.; Kim, S. O.; Kim, Y. H., Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 2011, 106 (17), 175502.
38. Li, Y.; Zhou, Z.; Shen, P.; Chen, Z., Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 2009, 3 (7), 1952-8.
39. Zhang, L. P.; Xia, Z. H., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. Journal of Physical Chemistry C 2011, 115 (22), 11170-11176.
40. Zhao, J.; Cabrera, C. R.; Xia, Z.; Chen, Z., Single−sided fluorine–functionalized graphene: A metal–free electrocatalyst with high efficiency for oxygen reduction reaction. Carbon 2016, 104, 56-63.
41. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. science 2009, 323 (5915), 760-4.
42. Wu, J.; Ma, L.; Yadav, R. M.; Yang, Y.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P. M., Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Appl. Mater. Interfaces 2015, 7 (27), 14763-9.
43. Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Jianyi, L. Y.; Ruoff, R. S., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5 (7), 7936-7942.
44. She, Y.; Chen, J.; Zhang, C.; Lu, Z.; Ni, M.; Sit, P. H.-L.; Leung, M. K., Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms. Appl. Energy 2018, 225, 513-521.
45. Yu, L.; Pan, X. L.; Cao, X. M.; Hu, P.; Bao, X. H., Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. Journal of Catalysis 2011, 282 (1), 183-190.
46. Wang, J.; Li, L.; Wei, Z. D., Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene. Acta Physico-Chimica Sinica 2016, 32 (1), 321-328.
47. Baker, M. J.; Hughes, C. S.; Hollywood, K. A., Raman spectroscopy. In Biophotonics: Vibrational Spectroscopic Diagnostics, Morgan & Claypool Publishers: 2016; pp 3-1-3-13.
48. Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W., Surface-Enhanced Raman-Scattering. J. Phys. Condens. Matter 1992, 4 (5), 1143-1212.
49. Schatz, G. C.; Young, M. A.; Van Duyne, R. P., Electromagnetic mechanism of SERS. In Surface-Enhanced Raman Scattering: Physics and Applications, 2006; Vol. 103, pp 19-45.
50. Michaels, A. M.; Jiang, J.; Brus, L., Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. J. Phys. Chem. B 2000, 104 (50), 11965-11971.
51. Otto, A., The ‘chemical’(electronic) contribution to surface‐enhanced Raman scattering. Journal of Raman Specroscopy 2005, 36 (6‐7), 497-509.
52. Morton, S. M.; Jensen, L., Understanding the molecule-surface chemical coupling in SERS. Journal of the American Chemical Society 2009, 131 (11), 4090-8.
53. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26 (2), 163-166.
54. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99 (15), 5215-5217.
55. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial. Electrochem. 1977, 84 (1), 1-20.
56. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. science 1995, 267 (5204), 1629-32.
57. Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J., Multifunctional Au‐Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection. Advanced Functional Materials 2010, 20 (17), 2815-2824.
58. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Duyne, R. P., Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. Journal of the American Chemical Society 2007, 129 (24), 7647-56.
59. Rana, F., Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 2008, 7 (1), 91-99.
60. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters 2009, 9 (5), 1752-8.
61. Luo, Z. Q.; Lim, S. H.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y., Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry 2011, 21 (22), 8038-8044.
62. Zafar, Z.; Ni, Z. H.; Wu, X.; Shi, Z. X.; Nan, H. Y.; Bai, J.; Sun, L. T., Evolution of Raman spectra in nitrogen doped graphene. Carbon 2013, 61, 57-62.
63. Sun, Y. S.; Lin, C. F.; Luo, S. T., Two-Dimensional Nitrogen-Enriched Carbon Nanosheets with Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C 2017, 121 (27), 14795-14802.
64. Joo, Y.; Kim, M.; Kanimozhi, C.; Huang, P. S.; Wong, B. M.; Roy, S. S.; Arnold, M. S.; Gopalan, P., Effect of Dipolar Molecule Structure on the Mechanism of Graphene-Enhanced Raman Scattering. Journal of Physical Chemistry C 2016, 120 (25), 13815-13824.
65. Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry 2006, 27 (15), 1787-99.
66. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, J., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64 (4), 1045.
67. Hamann, D.; Schlüter, M.; Chiang, C., Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43 (20), 1494.
68. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41 (11), 7892-7895.
69. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14 (11), 2717-2744.
70. Kirkpatrick, S.; Gelatt, C. D., Jr.; Vecchi, M. P., Optimization by simulated annealing. science 1983, 220 (4598), 671-80.
71. BIOVIA, D. S., Materials Studio. San Diego: Dassault Systèmes 2016.
72. Delley, B., From molecules to solids with the DMol3 approach. Journal of Chemical Physics 2000, 113 (18), 7756-7764.
73. BIOVIA, D. S., Sorption. San Diego: Dassault Systèmes 2016.
74. Baskin, Y.; Meyer, L., Lattice Constants of Graphite at Low Temperatures. Phys. Rev. 1955, 100 (2), 544-544.
75. Zhang, K.; Yu, S.; Jv, B.; Zheng, W., Interaction of Rhodamine 6G molecules with graphene: a combined computational-experimental study. Physical Chemistry Chemical Physics 2016, 18 (41), 28418-28427.
76. Adhikesavalu, D. N.; Mastropaolo, D.; Camerman, A.; Camerman, N., Two rhodamine derivatives: 9-[2-(ethoxycarbonyl)phenyl]-3,6-bis-(ethylamino)-2,7-dimethylxanthylium chloride monohydrate and 3,6-diamino-9-[2-(methoxycarbonyl)-phenyl]xanthylium chloride trihydrate. Acta Crystallogr. A 2001, 57 (Pt 5), 657-9.
77. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13 (12), 5188-5192.
78. Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A., Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (18), 10037-41.
79. Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A., PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research 2004, 32 (Web Server issue), W665-7.
80. Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A., PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research 2007, 35 (Web Server issue), W522-5.
81. Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L. E.; Brookes, D. H.; Wilson, L.; Chen, J.; Liles, K.; Chun, M.; Li, P.; Gohara, D. W.; Dolinsky, T.; Konecny, R.; Koes, D. R.; Nielsen, J. E.; Head-Gordon, T.; Geng, W.; Krasny, R.; Wei, G. W.; Holst, M. J.; McCammon, J. A.; Baker, N. A., Improvements to the APBS biomolecular solvation software suite. Protein Science 2018, 27 (1), 112-128.
82. Boukhvalov, D. W.; Son, Y. W., Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling. Nanoscale 2012, 4 (2), 417-20.
83. Hildebrandt, P.; Stockburger, M., Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. Journal of Physical Chemistry 1984, 88 (24), 5935-5944.
84. Weiss, A.; Haran, G., Time-dependent single-molecule Raman scattering as a probe of surface dynamics. J. Phys. Chem. B 2001, 105 (49), 12348-12354.
85. Lombardi, J. R.; Birke, R. L.; Haran, G., Single Molecule SERS Spectral Blinking and Vibronic Coupling. Journal of Chemical Physics 2011, 115 (11), 4540-4545.
86. Yoon, J. C.; Hwang, J.; Thiyagarajan, P.; Ruoff, R. S.; Jang, J. H., Highly Enhanced Raman Scattering on Carbonized Polymer Films. ACS Appl. Mater. Interfaces 2017, 9 (25), 21457-21463. |