博碩士論文 105324050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.142.212.153
姓名 周韋成(Wei-Cheng Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
(Improvement of GC-rich RNA detection specificity by methylated phosphate DNA probe design on nanowire field effect transistor)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量
★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究★ 利用核適體作為訊號放大器於矽奈米線場效電晶體免疫感測器對生物標記物進行定量分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在近幾年來,核酸檢測的發展對於精準醫療的進展扮演很重要的角色,由於多晶矽奈米線場效電晶體具高靈敏度、迅速的反應時間及即時檢測,因此在核酸檢測應用端上已經成為一有力工具在。
在核酸檢測中,富含GC鹼基的核酸序列容易具有非專一性的結合,常常造成精準醫療發展上的阻礙。造成非專一性的結合是因為富含GC鹼基之序列容易形成二級結構,形成hairpin或是loop結構,在核酸檢測的訊號上帶來不準確性及可能在醫療上錯誤的執行。
為了能夠解決非專一性的核酸檢測,我們嘗試利用甲基化核酸DNA作為我們的檢測探針,甲基化核酸探針因為其核苷酸間磷酸根骨幹之官能基被甲基化,所以成為不帶電的DNA類似物。在我們實驗室先前的研究中,因為其不帶電的特性,在低鹽環境下能夠使DNA雙股在雜交時其靜電排斥效應減弱,形成穩定雙股螺旋結構,而一般DNA則因為靜電排斥力,其雙股螺旋結構較為不穩定,因此本研究設計nDNA於探針中,進一步針對基因檢測更困難的富含GC鹼基序列,嘗試得到較佳專一性,確實且有效率地提升DNA探針在與另一股DNA雜交時的辨識力。
在本研究中,選擇(3-aminopropyl)triethoxysilane(APTES)化合物為固定DNA探針之偶聯劑,為建立穩定且較佳的檢測訊號,所以先嘗試去找到APTES固定DNA探針的最佳化學條件,來使固定在多晶矽奈米線場效電晶體上之DNA探針具一致性,實驗結果發現,APTES溶於99%及95%酒精,在環境通入氮氣後比起沒有通入氮氣,其表面型態更為均勻,且固定上DNA探針經由FET量測,所得到之每一次量測訊號穩定許多。而後利用甲基化核酸DNA作為探針,檢測富含GC鹼基之序列,從實驗結果中,我們在低鹽濃度的情況下,確實有效地提升檢測富含GC鹼基的辨識力,且我們把在低鹽濃度之雜交環境溫度提升至40℃,更發現到nDNA探針辨識單一鹼基錯誤配對的能力進一步提升,因此從結果上來看,利用甲基化核酸DNA探針在多晶矽奈米線場效電晶體的核酸檢測上,與一般DNA探針比較下,甲基化核酸DNA具更大的潛力,配合雜交環境的選擇,可以創造更佳的檢測專一性。
摘要(英) In recent years, researches on detection of nucleic acid have played an important role in the development of precision medicine. Nanowire field effect transistor(NWFET) has been a powerful tool for DNA or protein sensor due to their high sensitivity, fast response time and can be applied in real-time detection.
Nonspecific biosensing signal of these GC-rich nucleic acids will hamper the progress of the research into gene sequences. It is believed that the main cause of nonspecific biosensing of GC-rich sequences is the formation of a secondary structure such as hairpins or loops and result in self-complementary conformation.
To solve the nonspecific biosensing, we try to make good use of phosphate methylated DNA(nDNA) as a detection probe on the sensor surface. It is an uncharged DNA analogue due to the backbone phosphate groups changed by methylphosphate groups, making no electrostatic repulsion during hybridization between nDNA and regular DNA. From the previous study of our laboratory, the perfect match sequences will become more stable due to the reduction of electrostatic repulsion between the complementary DNA. As the result, we can indeed increase the efficiency of mismatch discrimination.
In our studies, we tried to find a optimized condition of incubating FET substrate with (3-aminopropyl)triethoxysilane(APTES) to achieve uniform ligand density. Followed by immobilized nDNA as probe for possible better binding/hybridization specificity of GC-rich target miRNA. By detecting HCV-3b RNA on the NWFET, nDNA probe can successfully improve the mismatch discrimination in GC-rich nucleic acids in a lower hybridization salt concentration. We conclude that nDNA probe can effectively increase specificity on detecting GC-rich nucleic acids in NWFET. With the advantages of lower salt concentration condition, we believe that designed nDNA probes provide tremendous potential in biosensing on NWFET with higher specificity comparing with that of natural DNA probe.
關鍵字(中) ★ 矽奈米線場效電晶體
★ 核酸
★ GC 含量
★ 單一核苷酸多形性
關鍵字(英) ★ silicon nanowire field effect transistor
★ nucleic acid
★ GC content
★ single nucleotide polymorph
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xvii
第一章 緒論 1
第二章 文獻回顧 4
2.1 基因檢測 4
2.1.1 基因檢測平台 5
2.2 矽奈米線場效電晶體生物感測器 9
2.3 核酸分子 15
2.3.1 核酸分子概論 15
2.3.2 去氧核醣核酸結構 15
2.3.3核醣核酸結構 19
2.3.4 微小核糖核酸結構 20
2.3.5 量測核酸探針種類 21
2.3.6 序列之G(Guanine)、C(Cytosine)鹼基含量影響 27
2.4 單一核苷酸多型性 30
2.4.1 SNP概論 30
2.4.2 SNP錯誤配對辨識能力之研究 31
2.5 晶片表面改質 33
2.5.1 自組裝單層膜表面改質技術 33
2.5.2 表面分子固定化 39
2.5.3 3-氨基丙基三乙氧基矽烷(APTES)於自組裝單層膜之優化 40
第三章 實驗藥品、儀器設備與方法 45
3.1 實驗藥品 45
3.2 儀器設備 46
3.3 晶片表面改質 47
3.3.1 晶片表面光阻去除及氧電漿處理 47
3.3.2 修飾APTES((3-aminopropyl)triethoxysilane) 47
3.3.3 修飾GA(glutaraldehyde) 47
3.3.4 探針固定化 48
3.4 FET電性測量 49
3.5 Circular Dichroism (CD)實驗 50
3.6 SYBR Green螢光熔點測量實驗 50
3.7 nDNA質譜分析 51
第四章 結果與討論 53
4.1 表面改質優化 53
4.1.1改變溶劑之水含量修飾APTES 53
4.1.2 溶劑中加入弱鹼修飾APTES 58
4.1.3 修飾戊二醛(Glutaraldehyde) 59
4.2 部分修飾nDNA以圓二色光譜儀測定構型 62
4.3 XPS表面元素分析 65
4.4 探針於辨識單一核甘酸錯誤配對之能力探討 67
4.4.1 HCV-3b序列之Tm(melting temperature)量測 68
4.4.2 一般DNA探針辨識在富含GC鹼基單一核苷酸錯位能力探討 72
4.4.3 nDNA探針辨識在富含GC鹼基單一核苷酸錯位能力探討 73
4.4.4 於低鹽環境下nDNA/DNA探針辨識在富含GC鹼基單一核苷酸錯位能力探討 76
4.4.5 提升雜交溫度以提升nDNA/DNA探針辨識效果 82
第五章 結論與未來展望 86
5.1 結論 86
5.2 未來展望 87
第六章 參考文獻 89
參考文獻 1. Cui, Y., Q. Wei, H. Park, and C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001. 293(5533): p. 1289-92.
2. Chen, K.-I., B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154.
3. Wolf, A.B., R.J. Caselli, E.M. Reiman, and J. Valla, APOE & Neuroenergetics: an Emerging Paradigm in Alzheimer′s Disease. Neurobiology of aging, 2013. 34(4): p. 1007-1017.
4. Haugland, R.A., M. Varma, M. Sivaganesan, C. Kelty, L. Peed, and O.C. Shanks, Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by qPCR. Systematic and Applied Microbiology, 2010. 33(6): p. 348-357.
5. Sang, S.B., Y.J. Wang, Q.L. Feng, Y. Wei, J.L. Ji, and W.D. Zhang, Progress of new label-free techniques for biosensors: a review. Critical Reviews in Biotechnology, 2016. 36(3): p. 465-481.
6. Li, D., S. Song, and C. Fan, Target-Responsive Structural Switching for Nucleic Acid-Based Sensors. Accounts of Chemical Research, 2010. 43(5): p. 631-641.
7. Song, S., Y. Qin, Y. He, Q. Huang, C. Fan, and H.Y. Chen, Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev, 2010. 39(11): p. 4234-43.
8. Wang, J., Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron, 2006. 21(10): p. 1887-92.
9. Demirel, G., M.O. Caglayan, B. Garipcan, and E. Piskin, A novel DNA biosensor based on ellipsometry. Surface Science, 2008. 602(4): p. 952-959.
10. Nabok, A., A. Tsargorodskaya, F. Davis, and S.P.J. Higson, The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosensors & Bioelectronics, 2007. 23(3): p. 377-383.
11. Feltis, B.N., B.A. Sexton, F.L. Glenn, M.J. Best, M. Wilkins, and T.J. Davis, A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron, 2008. 23(7): p. 1131-6.
12. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical, 1999. 54(1-2): p. 3-15.
13. Mavri, J., P. Raspor, and M. Franko, Application of chromogenic reagents in surface plasmon resonance (SPR). Biosensors & Bioelectronics, 2007. 22(6): p. 1163-1167.
14. McKendry, R., J.Y. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.J. Guntherodt, and C. Gerber, Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(15): p. 9783-9788.
15. Qavi, A.J. and R.C. Bailey, Multiplexed Detection and Label-Free Quantitation of MicroRNAs Using Arrays of Silicon Photonic Microring Resonators. Angewandte Chemie-International Edition, 2010. 49(27): p. 4608-4611.
16. Tsai, C.C., P.L. Chiang, C.J. Sun, T.W. Lin, M.H. Tsai, Y.C. Chang, and Y.T. Chen, Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology, 2011. 22(13): p. 135503.
17. Li, Z., Y. Chen, X. Li, T.I. Kamins, K. Nauka, and R.S. Williams, Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires. Nano Letters, 2004. 4(2): p. 245-247.
18. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. 1953. JAMA, 1993. 269(15): p. 1966-7.
19. Higgs, P.G., RNA secondary structure: physical and computational aspects. Q Rev Biophys, 2000. 33(3): p. 199-253.
20. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-854.
21. Reinhart, B.J., F.J. Slack, M. Basson, A.E. Pasquinelli, J.C. Bettinger, A.E. Rougvie, H.R. Horvitz, and G. Ruvkun, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.
22. Pasquinelli, A.E., B.J. Reinhart, F. Slack, M.Q. Martindale, M.I. Kuroda, B. Maller, D.C. Hayward, E.E. Ball, B. Degnan, P. Muller, J. Spring, A. Srinivasan, M. Fishman, J. Finnerty, J. Corbo, M. Levine, P. Leahy, E. Davidson, and G. Ruvkun, Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000. 408(6808): p. 86-9.
23. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5.
24. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
25. Sen, G.L. and H.M. Blau, Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol, 2005. 7(6): p. 633-6.
26. Valencia-Sanchez, M.A., J. Liu, G.J. Hannon, and R. Parker, Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 2006. 20(5): p. 515-24.
27. Yan, L.X., X.F. Huang, Q. Shao, M.Y. Huang, L. Deng, Q.L. Wu, Y.X. Zeng, and J.Y. Shao, MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 2008. 14(11): p. 2348-60.
28. Zhang, Z., Z. Li, C. Gao, P. Chen, J. Chen, W. Liu, S. Xiao, and H. Lu, miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest, 2008. 88(12): p. 1358-66.
29. Zhang, J.-g., J.-j. Wang, F. Zhao, Q. Liu, K. Jiang, and G.-h. Yang, MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clinica Chimica Acta, 2010. 411(11): p. 846-852.
30. Palmer, S., A.P. Wiegand, F. Maldarelli, H. Bazmi, J.M. Mican, M. Polis, R.L. Dewar, A. Planta, S. Liu, J.A. Metcalf, J.W. Mellors, and J.M. Coffin, New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol, 2003. 41(10): p. 4531-6.
31. Raymond, C.K., B.S. Roberts, P. Garrett-Engele, L.P. Lim, and J.M. Johnson, Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA, 2005. 11(11): p. 1737-44.
32. Denison, C. and T. Kodadek, Small-molecule-based strategies for controlling gene expression. Chem Biol, 1998. 5(6): p. R129-45.
33. Dervan, P.B., Molecular recognition of DNA by small molecules. Bioorg Med Chem, 2001. 9(9): p. 2215-35.
34. Egholm, M., O. Buchardt, P.E. Nielsen, and R.H. Berg, Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. Journal of the American Chemical Society, 1992. 114(5): p. 1895-1897.
35. Egholm, M., O. Buchardt, L. Christensen, C. Behrens, S.M. Freier, D.A. Driver, R.H. Berg, S.K. Kim, B. Norden, and P.E. Nielsen, PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 1993. 365(6446): p. 566-8.
36. Tomac, S., M. Sarkar, T. Ratilainen, P. Wittung, P.E. Nielsen, B. Nordén, and A. Gräslund, Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
37. Oliveira, K., G.W. Procop, D. Wilson, J. Coull, and H. Stender, Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol, 2002. 40(1): p. 247-51.
38. Wang, J., E. Palecek, P.E. Nielsen, G. Rivas, X. Cai, H. Shiraishi, N. Dontha, D. Luo, and P.A.M. Farias, Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors. Journal of the American Chemical Society, 1996. 118(33): p. 7667-7670.
39. Ray, A. and B. Norden, Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J, 2000. 14(9): p. 1041-60.
40. Obika, S., D. Nanbu, Y. Hari, K.-i. Morio, Y. In, T. Ishida, and T. Imanishi, Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
41. Bondensgaard, K., M. Petersen, K. Singh Sanjay, K. Rajwanshi Vivek, R. Kumar, J. Wengel, and P. Jacobsen Jens, Structural Studies of LNA:RNA Duplexes by NMR: Conformations and Implications for RNase H Activity. Chemistry – A European Journal, 2000. 6(15): p. 2687-2695.
42. Koshkin, A.A., P. Nielsen, M. Meldgaard, V.K. Rajwanshi, S.K. Singh, and J. Wengel, LNA (Locked Nucleic Acid):  An RNA Mimic Forming Exceedingly Stable LNA:LNA Duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
43. You, Y., B.G. Moreira, M.A. Behlke, and R. Owczarzy, Design of LNA probes that improve mismatch discrimination. Nucleic Acids Research, 2006. 34(8): p. e60-e60.
44. Fang, S., H.J. Lee, A.W. Wark, and R.M. Corn, Attomole Microarray Detection of MicroRNAs by Nanoparticle-Amplified SPR Imaging Measurements of Surface Polyadenylation Reactions. Journal of the American Chemical Society, 2006. 128(43): p. 14044-14046.
45. Koole, L.H., H.M. Moody, N.L.H.L. Broeders, P.J.L.M. Quaedflieg, W.H.A. Kuijpers, M.H.P. Van Genderen, A.J.J.M. Coenen, S. Van der Wal, and H.M. Buck, Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
46. Kuijpers, W.H.A., J. Huskens, L.H. Koole, and C.A.A. van Boeckel, Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic Acids Research, 1990. 18(17): p. 5197-5205.
47. van Genderen Marcel, H.P., H. Koole Leo, and M. Buck Henk, Hybridization of phosphate‐methylated DNA and natural oligonucleotides. Implications for protein‐induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 2010. 108(1): p. 28-35.
48. Coenen, A.J.J.M., L.H.G. Henckens, Y. Mengerink, S. van der Wal, P.J.L.M. Quaedflieg, L.H. Koole, and E.M. Meijer, Optimization of the separation of the Rp and Sp diastereomers of phosphate-methylated DNA and RNA dinucleotides. Journal of Chromatography A, 1992. 596(1): p. 59-66.
49. Miller, P.S., K.N. Fang, N.S. Kondo, and P.O. Ts′o, Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc, 1971. 93(24): p. 6657-65.
50. Miller, P.S., L.T. Braiterman, and P.O.P. Ts′o, Effects of a trinucleotide ethyl phosphotriester, Gmp(Et)Gmp(Et)U, on mammalian cells in culture. Biochemistry, 1977. 16(9): p. 1988-1996.
51. .
52. Buck, H.M., A conformational B-Z DNA study monitored with phosphatemethylated DNA as a model for epigenetic dynamics focused on 5-(hydroxy)methylcytosine. Journal of Biophysical Chemistry, 2013. 04(02): p. 37-46.
53. Mu, L., Y. Chang, S.D. Sawtelle, M. Wipf, X. Duan, and M.A. Reed, Silicon Nanowire Field-Effect Transistors—A Versatile Class of Potentiometric Nanobiosensors. IEEE Access, 2015. 3: p. 287-302.
54. 陳奕儒 and Y.-J. Chen, 探討中性DNA與一般DNA雜交反應熱力學與結合機制之研究;Studies of thermodynamic and mechanism for neutralized DNA (nDNA)/DNA and DNA/DNA duplex formation. 國立中央大學.
55. Musso, M., R. Bocciardi, S. Parodi, R. Ravazzolo, and I. Ceccherini, Betaine, Dimethyl Sulfoxide, and 7-Deaza-dGTP, a Powerful Mixture for Amplification of GC-Rich DNA Sequences. The Journal of Molecular Diagnostics, 2006. 8(5): p. 544-550.
56. Ralser, M., R. Querfurth, H.-J. Warnatz, H. Lehrach, M.-L. Yaspo, and S. Krobitsch, An efficient and economic enhancer mix for PCR. Biochemical and Biophysical Research Communications, 2006. 347(3): p. 747-751.
57. Baskaran, N., R.P. Kandpal, A.K. Bhargava, M.W. Glynn, A. Bale, and S.M. Weissman, Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res, 1996. 6(7): p. 633-8.
58. Sahdev, S., S. Saini, P. Tiwari, S. Saxena, and K. Singh Saini, Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions. Molecular and Cellular Probes, 2007. 21(4): p. 303-307.
59. Kushon, S.A., J.P. Jordan, J.L. Seifert, H. Nielsen, P.E. Nielsen, and B.A. Armitage, Effect of Secondary Structure on the Thermodynamics and Kinetics of PNA Hybridization to DNA Hairpins. Journal of the American Chemical Society, 2001. 123(44): p. 10805-10813.
60. Stoneking, M., Single nucleotide polymorphisms. From the evolutionary past. Nature, 2001. 409(6822): p. 821-2.
61. Cargill, M., D. Altshuler, J. Ireland, P. Sklar, K. Ardlie, N. Patil, N. Shaw, C.R. Lane, E.P. Lim, N. Kalyanaraman, J. Nemesh, L. Ziaugra, L. Friedland, A. Rolfe, J. Warrington, R. Lipshutz, G.Q. Daley, and E.S. Lander, Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet, 1999. 22(3): p. 231-8.
62. Ananthanawat, C., T. Vilaivan, W. Mekboonsonglarp, and V.P. Hoven, Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosensors and Bioelectronics, 2009. 24(12): p. 3544-3549.
63. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
64. Capecchi, G., M.G. Faga, G. Martra, S. Coluccia, M.F. Iozzi, and M. Cossi, Adsorption of CH3COOH on TiO2: IR and theoretical investigations. p. 269-284.
65. Guan, M.W., C.S. William, and D.K. Steven, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819.
66. Kind, M. and C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7): p. 230-278.
67. Michael, K.E., V.N. Vernekar, B.G. Keselowsky, J.C. Meredith, R.A. Latour, and A.J. García, Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 2003. 19(19): p. 8033-8040.
68. Jones, J.A., L.A. Qin, H. Meyerson, I.K. Kwon, T. Matsuda, and J.M. Anderson, Instability of self-assembled monolayers as a model material system for macrophage/FBGC cellular behavior. J Biomed Mater Res A, 2008. 86(1): p. 261-8.
69. Wang, M.S., L.B. Palmer, J.D. Schwartz, and A. Razatos, Evaluating Protein Attraction and Adhesion to Biomaterials with the Atomic Force Microscope. Langmuir, 2004. 20(18): p. 7753-7759.
70. Wang, H., S. Chen, L. Li, and S. Jiang, Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates. Langmuir, 2005. 21(7): p. 2633-2636.
71. Niemeyer Christof , M., Semisynthetic DNA–Protein Conjugates for Biosensing and Nanofabrication. Angewandte Chemie International Edition, 2010. 49(7): p. 1200-1216.
72. Rusmini, F., Z. Zhong, and J. Feijen, Protein Immobilization Strategies for Protein Biochips. Biomacromolecules, 2007. 8(6): p. 1775-1789.
73. Guha Thakurta, S. and A. Subramanian, Fabrication of dense, uniform aminosilane monolayers: A platform for protein or ligand immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 414: p. 384-392.
74. Pasternack, R.M., S. Rivillon Amy, and Y.J. Chabal, Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature. Langmuir, 2008. 24(22): p. 12963-12971.
75. Vrancken, K.C., P. Van Der Voort, I. Gillis-D′Hamers, E.F. Vansant, and P. Grobet, Influence of water in the reaction of [gamma]-aminopropyltriethoxysilane with silica gel. A Fourier-transform infrared and cross-polarisation magic-angle-spinning nuclear magnetic resonance study. Journal of the Chemical Society, Faraday Transactions, 1992. 88(21): p. 3197-3200.
76. Rasmussen, K.E. and J. Albrechtsen, Glutaraldehyde. The influence of pH, temperature, and buffering on the polymerization rate. Histochemistry, 1974. 38(1): p. 19-26.
77. Cai, B., S. Wang, L. Huang, Y. Ning, Z. Zhang, and G.-J. Zhang, Ultrasensitive Label-Free Detection of PNA–DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano, 2014. 8(3): p. 2632-2638.
78. Chayama, K., Genotyping Hepatitis C Virus by Type-Specific Primers for PCR Based on NS5 Region, in Hepatitis C Protocols, J.Y.-N. Lau, Editor. 1998, Humana Press: Totowa, NJ. p. 165-173.
79. Schweitzer, B.A. and E.T. Kool, Hydrophobic, Non-Hydrogen-Bonding Bases and Base Pairs in DNA. J Am Chem Soc, 1995. 117(7): p. 1863-1872.
80. Kankia, B.I. and L.A. Marky, DNA, RNA, and DNA/RNA Oligomer Duplexes:  A Comparative Study of Their Stability, Heat, Hydration, and Mg2+ Binding Properties. The Journal of Physical Chemistry B, 1999. 103(41): p. 8759-8767.
81. Peterson, A.W., L.K. Wolf, and R.M. Georgiadis, Hybridization of Mismatched or Partially Matched DNA at Surfaces. Journal of the American Chemical Society, 2002. 124(49): p. 14601-14607.
82. Chen, W.-Y., H.-C. Chen, Y.-S. Yang, C.-J. Huang, H.W.-H. Chan, and W.-P. Hu, Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosensors and Bioelectronics, 2013. 41: p. 795-801.
83. Zhou, J.C., B. Feller, B. Hinsberg, G. Sethi, P. Feldstein, J. Hihath, E. Seker, M. Marco, A. Knoesen, and R. Miller, Immobilization-mediated reduction in melting temperatures of DNA–DNA and DNA–RNA hybrids: Immobilized DNA probe hybridization studied by SPR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 481: p. 72-79.
84. Petty, T.J., C.E. Wagner, and A. Opdahl, Influence of Attachment Strategy on the Thermal Stability of Hybridized DNA on Gold Surfaces. Langmuir, 2014. 30(50): p. 15277-15284.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2018-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明