參考文獻 |
1. Cui, Y., Q. Wei, H. Park, and C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001. 293(5533): p. 1289-92.
2. Chen, K.-I., B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154.
3. Wolf, A.B., R.J. Caselli, E.M. Reiman, and J. Valla, APOE & Neuroenergetics: an Emerging Paradigm in Alzheimer′s Disease. Neurobiology of aging, 2013. 34(4): p. 1007-1017.
4. Haugland, R.A., M. Varma, M. Sivaganesan, C. Kelty, L. Peed, and O.C. Shanks, Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by qPCR. Systematic and Applied Microbiology, 2010. 33(6): p. 348-357.
5. Sang, S.B., Y.J. Wang, Q.L. Feng, Y. Wei, J.L. Ji, and W.D. Zhang, Progress of new label-free techniques for biosensors: a review. Critical Reviews in Biotechnology, 2016. 36(3): p. 465-481.
6. Li, D., S. Song, and C. Fan, Target-Responsive Structural Switching for Nucleic Acid-Based Sensors. Accounts of Chemical Research, 2010. 43(5): p. 631-641.
7. Song, S., Y. Qin, Y. He, Q. Huang, C. Fan, and H.Y. Chen, Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev, 2010. 39(11): p. 4234-43.
8. Wang, J., Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron, 2006. 21(10): p. 1887-92.
9. Demirel, G., M.O. Caglayan, B. Garipcan, and E. Piskin, A novel DNA biosensor based on ellipsometry. Surface Science, 2008. 602(4): p. 952-959.
10. Nabok, A., A. Tsargorodskaya, F. Davis, and S.P.J. Higson, The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosensors & Bioelectronics, 2007. 23(3): p. 377-383.
11. Feltis, B.N., B.A. Sexton, F.L. Glenn, M.J. Best, M. Wilkins, and T.J. Davis, A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron, 2008. 23(7): p. 1131-6.
12. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical, 1999. 54(1-2): p. 3-15.
13. Mavri, J., P. Raspor, and M. Franko, Application of chromogenic reagents in surface plasmon resonance (SPR). Biosensors & Bioelectronics, 2007. 22(6): p. 1163-1167.
14. McKendry, R., J.Y. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.J. Guntherodt, and C. Gerber, Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(15): p. 9783-9788.
15. Qavi, A.J. and R.C. Bailey, Multiplexed Detection and Label-Free Quantitation of MicroRNAs Using Arrays of Silicon Photonic Microring Resonators. Angewandte Chemie-International Edition, 2010. 49(27): p. 4608-4611.
16. Tsai, C.C., P.L. Chiang, C.J. Sun, T.W. Lin, M.H. Tsai, Y.C. Chang, and Y.T. Chen, Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology, 2011. 22(13): p. 135503.
17. Li, Z., Y. Chen, X. Li, T.I. Kamins, K. Nauka, and R.S. Williams, Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires. Nano Letters, 2004. 4(2): p. 245-247.
18. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. 1953. JAMA, 1993. 269(15): p. 1966-7.
19. Higgs, P.G., RNA secondary structure: physical and computational aspects. Q Rev Biophys, 2000. 33(3): p. 199-253.
20. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-854.
21. Reinhart, B.J., F.J. Slack, M. Basson, A.E. Pasquinelli, J.C. Bettinger, A.E. Rougvie, H.R. Horvitz, and G. Ruvkun, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.
22. Pasquinelli, A.E., B.J. Reinhart, F. Slack, M.Q. Martindale, M.I. Kuroda, B. Maller, D.C. Hayward, E.E. Ball, B. Degnan, P. Muller, J. Spring, A. Srinivasan, M. Fishman, J. Finnerty, J. Corbo, M. Levine, P. Leahy, E. Davidson, and G. Ruvkun, Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000. 408(6808): p. 86-9.
23. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5.
24. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
25. Sen, G.L. and H.M. Blau, Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol, 2005. 7(6): p. 633-6.
26. Valencia-Sanchez, M.A., J. Liu, G.J. Hannon, and R. Parker, Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 2006. 20(5): p. 515-24.
27. Yan, L.X., X.F. Huang, Q. Shao, M.Y. Huang, L. Deng, Q.L. Wu, Y.X. Zeng, and J.Y. Shao, MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 2008. 14(11): p. 2348-60.
28. Zhang, Z., Z. Li, C. Gao, P. Chen, J. Chen, W. Liu, S. Xiao, and H. Lu, miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest, 2008. 88(12): p. 1358-66.
29. Zhang, J.-g., J.-j. Wang, F. Zhao, Q. Liu, K. Jiang, and G.-h. Yang, MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clinica Chimica Acta, 2010. 411(11): p. 846-852.
30. Palmer, S., A.P. Wiegand, F. Maldarelli, H. Bazmi, J.M. Mican, M. Polis, R.L. Dewar, A. Planta, S. Liu, J.A. Metcalf, J.W. Mellors, and J.M. Coffin, New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol, 2003. 41(10): p. 4531-6.
31. Raymond, C.K., B.S. Roberts, P. Garrett-Engele, L.P. Lim, and J.M. Johnson, Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA, 2005. 11(11): p. 1737-44.
32. Denison, C. and T. Kodadek, Small-molecule-based strategies for controlling gene expression. Chem Biol, 1998. 5(6): p. R129-45.
33. Dervan, P.B., Molecular recognition of DNA by small molecules. Bioorg Med Chem, 2001. 9(9): p. 2215-35.
34. Egholm, M., O. Buchardt, P.E. Nielsen, and R.H. Berg, Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. Journal of the American Chemical Society, 1992. 114(5): p. 1895-1897.
35. Egholm, M., O. Buchardt, L. Christensen, C. Behrens, S.M. Freier, D.A. Driver, R.H. Berg, S.K. Kim, B. Norden, and P.E. Nielsen, PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 1993. 365(6446): p. 566-8.
36. Tomac, S., M. Sarkar, T. Ratilainen, P. Wittung, P.E. Nielsen, B. Nordén, and A. Gräslund, Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
37. Oliveira, K., G.W. Procop, D. Wilson, J. Coull, and H. Stender, Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol, 2002. 40(1): p. 247-51.
38. Wang, J., E. Palecek, P.E. Nielsen, G. Rivas, X. Cai, H. Shiraishi, N. Dontha, D. Luo, and P.A.M. Farias, Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors. Journal of the American Chemical Society, 1996. 118(33): p. 7667-7670.
39. Ray, A. and B. Norden, Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J, 2000. 14(9): p. 1041-60.
40. Obika, S., D. Nanbu, Y. Hari, K.-i. Morio, Y. In, T. Ishida, and T. Imanishi, Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
41. Bondensgaard, K., M. Petersen, K. Singh Sanjay, K. Rajwanshi Vivek, R. Kumar, J. Wengel, and P. Jacobsen Jens, Structural Studies of LNA:RNA Duplexes by NMR: Conformations and Implications for RNase H Activity. Chemistry – A European Journal, 2000. 6(15): p. 2687-2695.
42. Koshkin, A.A., P. Nielsen, M. Meldgaard, V.K. Rajwanshi, S.K. Singh, and J. Wengel, LNA (Locked Nucleic Acid): An RNA Mimic Forming Exceedingly Stable LNA:LNA Duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
43. You, Y., B.G. Moreira, M.A. Behlke, and R. Owczarzy, Design of LNA probes that improve mismatch discrimination. Nucleic Acids Research, 2006. 34(8): p. e60-e60.
44. Fang, S., H.J. Lee, A.W. Wark, and R.M. Corn, Attomole Microarray Detection of MicroRNAs by Nanoparticle-Amplified SPR Imaging Measurements of Surface Polyadenylation Reactions. Journal of the American Chemical Society, 2006. 128(43): p. 14044-14046.
45. Koole, L.H., H.M. Moody, N.L.H.L. Broeders, P.J.L.M. Quaedflieg, W.H.A. Kuijpers, M.H.P. Van Genderen, A.J.J.M. Coenen, S. Van der Wal, and H.M. Buck, Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
46. Kuijpers, W.H.A., J. Huskens, L.H. Koole, and C.A.A. van Boeckel, Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic Acids Research, 1990. 18(17): p. 5197-5205.
47. van Genderen Marcel, H.P., H. Koole Leo, and M. Buck Henk, Hybridization of phosphate‐methylated DNA and natural oligonucleotides. Implications for protein‐induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 2010. 108(1): p. 28-35.
48. Coenen, A.J.J.M., L.H.G. Henckens, Y. Mengerink, S. van der Wal, P.J.L.M. Quaedflieg, L.H. Koole, and E.M. Meijer, Optimization of the separation of the Rp and Sp diastereomers of phosphate-methylated DNA and RNA dinucleotides. Journal of Chromatography A, 1992. 596(1): p. 59-66.
49. Miller, P.S., K.N. Fang, N.S. Kondo, and P.O. Ts′o, Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc, 1971. 93(24): p. 6657-65.
50. Miller, P.S., L.T. Braiterman, and P.O.P. Ts′o, Effects of a trinucleotide ethyl phosphotriester, Gmp(Et)Gmp(Et)U, on mammalian cells in culture. Biochemistry, 1977. 16(9): p. 1988-1996.
51. .
52. Buck, H.M., A conformational B-Z DNA study monitored with phosphatemethylated DNA as a model for epigenetic dynamics focused on 5-(hydroxy)methylcytosine. Journal of Biophysical Chemistry, 2013. 04(02): p. 37-46.
53. Mu, L., Y. Chang, S.D. Sawtelle, M. Wipf, X. Duan, and M.A. Reed, Silicon Nanowire Field-Effect Transistors—A Versatile Class of Potentiometric Nanobiosensors. IEEE Access, 2015. 3: p. 287-302.
54. 陳奕儒 and Y.-J. Chen, 探討中性DNA與一般DNA雜交反應熱力學與結合機制之研究;Studies of thermodynamic and mechanism for neutralized DNA (nDNA)/DNA and DNA/DNA duplex formation. 國立中央大學.
55. Musso, M., R. Bocciardi, S. Parodi, R. Ravazzolo, and I. Ceccherini, Betaine, Dimethyl Sulfoxide, and 7-Deaza-dGTP, a Powerful Mixture for Amplification of GC-Rich DNA Sequences. The Journal of Molecular Diagnostics, 2006. 8(5): p. 544-550.
56. Ralser, M., R. Querfurth, H.-J. Warnatz, H. Lehrach, M.-L. Yaspo, and S. Krobitsch, An efficient and economic enhancer mix for PCR. Biochemical and Biophysical Research Communications, 2006. 347(3): p. 747-751.
57. Baskaran, N., R.P. Kandpal, A.K. Bhargava, M.W. Glynn, A. Bale, and S.M. Weissman, Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res, 1996. 6(7): p. 633-8.
58. Sahdev, S., S. Saini, P. Tiwari, S. Saxena, and K. Singh Saini, Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions. Molecular and Cellular Probes, 2007. 21(4): p. 303-307.
59. Kushon, S.A., J.P. Jordan, J.L. Seifert, H. Nielsen, P.E. Nielsen, and B.A. Armitage, Effect of Secondary Structure on the Thermodynamics and Kinetics of PNA Hybridization to DNA Hairpins. Journal of the American Chemical Society, 2001. 123(44): p. 10805-10813.
60. Stoneking, M., Single nucleotide polymorphisms. From the evolutionary past. Nature, 2001. 409(6822): p. 821-2.
61. Cargill, M., D. Altshuler, J. Ireland, P. Sklar, K. Ardlie, N. Patil, N. Shaw, C.R. Lane, E.P. Lim, N. Kalyanaraman, J. Nemesh, L. Ziaugra, L. Friedland, A. Rolfe, J. Warrington, R. Lipshutz, G.Q. Daley, and E.S. Lander, Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet, 1999. 22(3): p. 231-8.
62. Ananthanawat, C., T. Vilaivan, W. Mekboonsonglarp, and V.P. Hoven, Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosensors and Bioelectronics, 2009. 24(12): p. 3544-3549.
63. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
64. Capecchi, G., M.G. Faga, G. Martra, S. Coluccia, M.F. Iozzi, and M. Cossi, Adsorption of CH3COOH on TiO2: IR and theoretical investigations. p. 269-284.
65. Guan, M.W., C.S. William, and D.K. Steven, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819.
66. Kind, M. and C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7): p. 230-278.
67. Michael, K.E., V.N. Vernekar, B.G. Keselowsky, J.C. Meredith, R.A. Latour, and A.J. García, Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 2003. 19(19): p. 8033-8040.
68. Jones, J.A., L.A. Qin, H. Meyerson, I.K. Kwon, T. Matsuda, and J.M. Anderson, Instability of self-assembled monolayers as a model material system for macrophage/FBGC cellular behavior. J Biomed Mater Res A, 2008. 86(1): p. 261-8.
69. Wang, M.S., L.B. Palmer, J.D. Schwartz, and A. Razatos, Evaluating Protein Attraction and Adhesion to Biomaterials with the Atomic Force Microscope. Langmuir, 2004. 20(18): p. 7753-7759.
70. Wang, H., S. Chen, L. Li, and S. Jiang, Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates. Langmuir, 2005. 21(7): p. 2633-2636.
71. Niemeyer Christof , M., Semisynthetic DNA–Protein Conjugates for Biosensing and Nanofabrication. Angewandte Chemie International Edition, 2010. 49(7): p. 1200-1216.
72. Rusmini, F., Z. Zhong, and J. Feijen, Protein Immobilization Strategies for Protein Biochips. Biomacromolecules, 2007. 8(6): p. 1775-1789.
73. Guha Thakurta, S. and A. Subramanian, Fabrication of dense, uniform aminosilane monolayers: A platform for protein or ligand immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 414: p. 384-392.
74. Pasternack, R.M., S. Rivillon Amy, and Y.J. Chabal, Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature. Langmuir, 2008. 24(22): p. 12963-12971.
75. Vrancken, K.C., P. Van Der Voort, I. Gillis-D′Hamers, E.F. Vansant, and P. Grobet, Influence of water in the reaction of [gamma]-aminopropyltriethoxysilane with silica gel. A Fourier-transform infrared and cross-polarisation magic-angle-spinning nuclear magnetic resonance study. Journal of the Chemical Society, Faraday Transactions, 1992. 88(21): p. 3197-3200.
76. Rasmussen, K.E. and J. Albrechtsen, Glutaraldehyde. The influence of pH, temperature, and buffering on the polymerization rate. Histochemistry, 1974. 38(1): p. 19-26.
77. Cai, B., S. Wang, L. Huang, Y. Ning, Z. Zhang, and G.-J. Zhang, Ultrasensitive Label-Free Detection of PNA–DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano, 2014. 8(3): p. 2632-2638.
78. Chayama, K., Genotyping Hepatitis C Virus by Type-Specific Primers for PCR Based on NS5 Region, in Hepatitis C Protocols, J.Y.-N. Lau, Editor. 1998, Humana Press: Totowa, NJ. p. 165-173.
79. Schweitzer, B.A. and E.T. Kool, Hydrophobic, Non-Hydrogen-Bonding Bases and Base Pairs in DNA. J Am Chem Soc, 1995. 117(7): p. 1863-1872.
80. Kankia, B.I. and L.A. Marky, DNA, RNA, and DNA/RNA Oligomer Duplexes: A Comparative Study of Their Stability, Heat, Hydration, and Mg2+ Binding Properties. The Journal of Physical Chemistry B, 1999. 103(41): p. 8759-8767.
81. Peterson, A.W., L.K. Wolf, and R.M. Georgiadis, Hybridization of Mismatched or Partially Matched DNA at Surfaces. Journal of the American Chemical Society, 2002. 124(49): p. 14601-14607.
82. Chen, W.-Y., H.-C. Chen, Y.-S. Yang, C.-J. Huang, H.W.-H. Chan, and W.-P. Hu, Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosensors and Bioelectronics, 2013. 41: p. 795-801.
83. Zhou, J.C., B. Feller, B. Hinsberg, G. Sethi, P. Feldstein, J. Hihath, E. Seker, M. Marco, A. Knoesen, and R. Miller, Immobilization-mediated reduction in melting temperatures of DNA–DNA and DNA–RNA hybrids: Immobilized DNA probe hybridization studied by SPR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 481: p. 72-79.
84. Petty, T.J., C.E. Wagner, and A. Opdahl, Influence of Attachment Strategy on the Thermal Stability of Hybridized DNA on Gold Surfaces. Langmuir, 2014. 30(50): p. 15277-15284. |