博碩士論文 105324054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.119.28.213
姓名 秦佳寬(Jia-Kuan Qin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
(Fabrication of Carbon Nanostructures with Size-Tunable Pores for Molecular Sensing through Surface Enhanced Raman Scattering)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構
★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究我們開發了一種製備高質量多孔碳材料的方法,通過聚苯乙烯-b-4-乙烯基?啶(PS-b-P4VP)嵌段共聚物(BCP)作為碳源的薄膜直接熱解。在熱解之前,通過溶劑蒸氣退火(SVA)處理自組裝的BCP奈米區域,然後進行表面重建以獲得多孔模板。我們發現,可以通過使用不同的初始形態或表面重建的溫度來調整孔徑。得到的具有相當大比表面積的多孔膜,可作為表面增強拉曼光譜(SERS)的優良基材,用於物理吸附羅丹明6G的分子傳感。在奈米結構表面含有的豐富的氮原子在促進通過化學機制產生,在拉曼增強中起關鍵作用。最重要的是,我們觀察到銀奈米粒子的加入能讓聚苯乙烯-b-4-乙烯基?啶石墨化,且在燒結後能得到連續性的奈米結構。基於構建明確的網絡奈米結構的多孔模板的獨特結構為製造SERS基底提供了新的設計策略。
摘要(英) We developed a method to fabricate porous carbon materials of high quality, via direct pyrolysis of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) as thin films as carbon resources. Prior to pyrolysis, self-asssembled BCP nanodomains were treated by solvent vapor annealing (SVA) followed by surface reconstruction to obtain the porous template. It can be found that the pore size can be adjusted by using different initial morphologies. The resultant porous films with a considerable specific surface area serve as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), coupled with fluorescence quenching, for molecular sensing of physically adsorbed Rhodamine 6G. The abundant nitrogen atoms terminating on the surface of nanostructures play a critical role in promoting a large Raman enhancement generated via a chemical mechanism. Most importantly, the observed enhancement factors show a clear dependence on the mesoscale porosity within nanostructures, indicating that the chemical enhancement can be steadily tuned with control over the interfacial areas as a function of the initial morphology. And then, we observed that inlaid silver nanoparticles enabled the polystyrene-b-4-vinylpyridine to be graphitized and that a continuous nanostructure could be obtained after sintering. The unique architecture of the porous template based on the construction of a building block of a well-defined network nanostructure provides a new design strategy for fabricating SERS substrates.
關鍵字(中) ★ 嵌段共聚物
★ 孔洞材料
★ 薄膜
★ 拉曼光譜
★ 拉曼訊號增強
關鍵字(英)
論文目次 摘要...................................ii
Abstract...............................iii
致謝...................................iv
目錄...................................v
圖目錄.................................viii
表目錄.................................xiii
第一章 序論...........................1
第二章 簡介...........................3
2-1嵌段共聚物之自組裝行為..............3
2-1-1熱退火(Thermal annealing).......7
2-1-2溶劑退火(Solvent annealing).....8
2-2表面重建(Surface reconstruction)..11
2-3薄膜應用............................13
2-4拉曼光譜學..........................21
2-5表面拉曼光譜訊號增強原理............23
2-5-1化學增強型基材....................24
2-5-2電磁場增強型基材..................26
2-6實驗動機............................30
第三章 實驗............................31
3-1高分子材料..........................31
3-2 溶劑藥品與基材.....................32
3-3 實驗儀器...........................33
3-4 試片製備與實驗步驟.................33
3-4-1矽晶基材(Si)清洗基材..............33
3-4-2矽晶基材(SiOx/Si)清洗基材.........33
3-4-3基材表面改質......................33
3-4-4 P(S-b-4VP)薄膜的製備.............34
3-4-5富含氮之碳膜的製備................35
3-4-6鑲嵌奈米粒子之基材的製備..........35
3-5 儀器分析...........................36
3-5-1原子力顯微鏡......................36
3-5-2光學顯微鏡........................37
3-5-3場發射掃描式電子顯微鏡............38
3-5-4 拉曼光譜儀.......................39
3-5-5 低掠角小角度X光散射訊號分析與擬合結構資訊....39
3-5-6 X射線光電子能譜儀................40
3-5-7高解析掃描穿透式電子顯微鏡........40
第四章 結果與討論- 化學增強型基材......42
4-1透過微胞的聚變過程控制初始結構......42
4-1-1微胞聚變與裂變過程................42
4-1-2不同蒸氣壓下進行溶劑退火,對結構的影響........44
4-2藉由結構重組製備孔洞材..............47
4-2-1不同溶劑和不同分子量進行結構重建之探討........47
4-2-2重建結構溫度後對結構之影響........52
4-3孔洞碳膜製備及在拉曼增強訊號之表現..54
4-3-1重建結構後對碳膜之影響............54
4-3-2富含氮之孔洞型碳材在拉曼增強訊號上的效果......58
第五章 結果與討論- 電磁場增強型基材....67
5-1鑲嵌銀奈米在富含氮之孔洞材..........67
5-1-1鑲嵌銀奈米在富含氮之孔洞碳材在拉曼增強訊號上的效果...67
5-1-2連續相固體銀基材..................73
第六章 結論............................81
參考文獻...............................83
參考文獻 1. Piner, R.D., Zhu, J., Xu, F., Hong, S., and Mirkin, C.A., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663.
2. Chen, Z., He, C., Li, F., Tong, L., Liao, X., and Wang, Y., Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing. Langmuir, 2010. 26(11): p. 8869-74.
3. Wang, Y., Tong, L., and Steinhart, M., Swelling-Induced Morphology Reconstruction in Block Copolymer Nanorods: Kinetics and Impact of Surface Tension During Solvent Evaporation. ACS Nano, 2011. 5(3): p. 1928-1938.
4. 林建甫, 富含氮奈米碳材製備與拉曼光譜增強基之應用. 碩士論文, 2016.
5. 張智堯, 聚苯乙烯聚4-乙烯?啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究. 碩士論文, 2011.
6. 劉峻佑, Tailoring Nanostructures of Dibolck Copolymer by Photochemistry and Its Applications in Spartial Control of Ag and Ag@Au Nanoparticles. 博士論文, 2015.
7. Sun, Y.S., Lin, C.F., Luo, S.T., and Su, C.Y., Block-Copolymer-Templated Hierarchical Porous Carbon Nanostructures with Nitrogen-Rich Functional Groups for Molecular Sensing. ACS Appl Mater Interfaces, 2017. 9(37): p. 31235-31244.
8. Bates, F.S. and Fredrickson, G.H., Block copolymers-designer soft materials. Physics Today, 2000.
9. Chavis Michelle, A., M., S.D., Wiesner Ulrich, B., and Ober Christopher, K., Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents. Advanced Functional Materials, 2015. 25(20): p. 3057-3065.
10. Tavakkoli, K., Hannon, A.F., Gotrik, K.W., Alexander?Katz, A., Ross, C.A., and Berggren, K.K., Rectangular symmetry morphologies in a topographically templated block copolymer. Advanced Materials, 2012. 24(31): p. 4249-4254.
11. Sinturel, C., Vayer, M.n., Morris, M., and Hillmyer, M.A., Solvent vapor annealing of block polymer thin films. Macromolecules, 2013. 46(14): p. 5399-5415.
12. Bates, F.S. and Fredrickson, G.H., Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry, 1990. 41(1): p. 525-557.
13. Tseng, Y.C. and Darling, S.B., Block Copolymer Nanostructures for Technology. Polymers, 2010. 2(4): p. 470-489.
14. Mansky, P., Russell, T.P., Hawker, C.J., Pitsikalis, M., and Mays, J., Ordered Diblock Copolymer Films on Random Copolymer Brushes. Macromolecules, 1997. 30(22): p. 6810-6813.
15. Mansky, P., Russell, T.P., Hawker, C.J., Mays, J., Cook, D.C., and Satija, S.K., Interfacial segregation in disordered block copolymers: effect of tunable surface potentials. Physical Review Letters, 1997. 79(2): p. 237-240.
16. Sivaniah, E., Hayashi, Y., Iino, M., Hashimoto, T., and Fukunaga, K., Observation of perpendicular orientation in symmetric diblock copolymer thin films on rough substrates. Macromolecules, 2003. 36(16): p. 5894-5896.
17. Park, S., Lee, D.H., Xu, J., Kim, B., Hong, S.W., Jeong, U., Xu, T., and Russell, T.P., Macroscopic 10-terabit–per–square-inch arrays from block copolymers with lateral order. Science, 2009. 323(5917): p. 1030-1033.
18. Morkved, T.L. and Jaeger, H.M., Thickness-induced morphology changes in lamellar diblock copolymer ultrathin films. Europhysics Letters, 1997. 40(6): p. 643-648.
19. Knoll, A., Horvat, A., Lyakhova, K.S., Krausch, G., Sevink, G.J.A., Zvelindovsky, A.V., and Magerle, R., Phase behavior in thin films of cylinder-forming block copolymers. Physical Review Letters, 2002. 89(3): p. 035501(1-4).
20. Hamley, I.W., Ordering in thin films of block copolymers: Fundamentals to potential applications. Progress in Polymer Science, 2009. 34(11): p. 1161-1210.
21. Nicolai, T., Colombani, O., and Chassenieux, C., Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter, 2010. 6(14): p. 3111-3118.
22. Loh, W., Block copolymer micelles. Encyclopedia of Surface and Colloid Science, 2006: p. 802-813.
23. Zhang, X., Douglas, J.F., Satija, S., and Karim, A., Enhanced vertical ordering of block copolymer films by tuning molecular mass. RSC Advances, 2015. 5(41): p. 32307-32318.
24. Kennemur, J.G., Hillmyer, M.A., and Bates, F.S., Synthesis, Thermodynamics, and Dynamics of Poly (4-tert-butylstyrene-b-methyl methacrylate). Macromolecules, 2012. 45(17): p. 7228-7236.
25. Stein, G.E., Liddle, J.A., Aquila, A.L., and Gullikson, E.M., Measuring the structure of epitaxially assembled block copolymer domains with soft X-ray diffraction. Macromolecules, 2009. 43(1): p. 433-441.
26. Gu, W., Huh, J., Hong, S.W., Sveinbjornsson, B.R., Park, C., Grubbs, R.H., and Russell, T.P., Self-Assembly of Symmetric Brush Diblock Copolymers. ACS Nano, 2013. 7(3): p. 2551-2558.
27. Kim, E., Ahn, H., Park, S., Lee, H., Lee, M., Lee, S., Kim, T., Kwak, E.-A., Lee, J.H., Lei, X., Huh, J., Bang, J., Lee, B., and Ryu, D.Y., Directed Assembly of High Molecular Weight Block Copolymers: Highly Ordered Line Patterns of Perpendicularly Oriented Lamellae with Large Periods. ACS Nano, 2013. 7(3): p. 1952-1960.
28. Stafford, C.M., Russell, T.P., and McCarthy, T.J., Expansion of Polystyrene Using Supercritical Carbon Dioxide:? Effects of Molecular Weight, Polydispersity, and Low Molecular Weight Components. Macromolecules, 1999. 32(22): p. 7610-7616.
29. Lai, C., Russel, W.B., and Register, R.A., Scaling of Domain Spacing in Concentrated Solutions of Block Copolymers in Selective Solvents. Macromolecules, 2002. 35(10): p. 4044-4049.
30. Gu, X., Gunkel, I., Hexemer, A., Gu, W., and Russell, T.P., An in situ grazing incidence X-ray scattering study of block copolymer thin films during solvent vapor annealing. Adv Mater, 2014. 26(2): p. 273-281.
31. Shibayama, M., Hashimoto, T., Hasegawa, H., and Kawai, H., Ordered structure in block polymer solutions. 3. Concentration dependence of microdomains in nonselective solvents. Macromolecules, 1983. 16(9): p. 1427-1433.
32. Kim, G. and Libera, M., Morphological development in solvent-cast polystyrene? polybutadiene? polystyrene (SBS) triblock copolymer thin films. Macromolecules, 1998. 31(8): p. 2569-2577.
33. Xu, T., Stevens, J., Villa, J.A., Goldbach, J.T., Guarini, K.W., Black, C.T., Hawker, C.J., and Russell, T.P., Block Copolymer Surface Reconstuction: A Reversible Route to Nanoporous Films. Advanced Functional Materials, 2003. 13(9): p. 698-702.
34. Wang, Y., Gosele, U., and Steinhart, M., Mesoporous Block Copolymer Nanorods by Swelling-Induced Morphology Reconstruction. Nano Letters, 2008. 8(10): p. 3548-3553.
35. Nunes, S.P., Behzad, A.R., Hooghan, B., Sougrat, R., Karunakaran, M., Pradeep, N., Vainio, U., and Peinemann, K.V., Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly. ACS Nano, 2011. 5(5): p. 3516-3522.
36. Kim, M.P., Kim, H.J., Kim, B.J., and Yi, G.R., Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions. Nanotechnology, 2015. 26(9): p. 095302(1-7).
37. T., R.A., X., L., J., W., A., S.W., and H., F., Facile Synthesis of Nanostructured Carbon through Self-Assembly between Block Copolymers and Carbohydrates. Advanced Functional Materials, 2007. 17(15): p. 2710-2716.
38. Soumyadip, C., Dieter, F., Petr, F., Manfred, S., and Leonid, I., Phase Inversion Strategy to Fabricate Porous Carbon for Li-S Batteries via Block Copolymer Self-Assembly. Advanced Materials Interfaces, 2018. 5(5): p. 1701116(1-11).
39. Ang, Z., Ting, Q., Shubo, C., Yayuan, L., Yongbin, Z., and Aihua, C., Vapor-Phase Polymerization and Carbonization to Nitrogen-Doped Carbon Nanoscale Networks with Designable Pore Geometries Templated from Block Copolymers. Advanced Materials Interfaces, 2018. 5(5): p. 1701390(1-9).
40. Choudhury, S., Agrawal, M., Formanek, P., Jehnichen, D., Fischer, D., Krause, B., Albrecht, V., Stamm, M., and Ionov, L., Nanoporous cathodes for high-energy Li–S batteries from gyroid block copolymer templates. ACS Nano, 2015. 9(6): p. 6147-6157.
41. Jang, Y.H., Chung, K., Quan, L.N., ?pa?kova, B., ?ipova, H., Moon, S., Cho, W.J., Shin, H.Y., Jang, Y.J., and Lee, J.E., Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors. Nanoscale, 2013. 5(24): p. 12261-12271.
42. Cho, W.J., Kim, Y., and Kim, J.K., Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS nano, 2011. 6(1): p. 249-255.
43. Chen, X., Perepichka, I.I., and Bazuin, C.G., Double-Striped Metallic Patterns from PS-b-P4VP Nanostrand Templates. ACS Applied Materials & Interfaces, 2014. 6(20): p. 18360-18367.
44. Hsueh, H.Y., Huang, Y.C., Ho, R.M., Lai, C.H., Taichi, M., and Hirokazu, H., Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. Advanced Materials, 2011. 23(27): p. 3041-3046.
45. Gardiner, D., Graves, R., Practical Raman Spectroscopy. Springer-Verlag, 1989.
46. Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N.J., Gardner, B., Martin-Hirsch, P.L., Walsh, M.J., McAinsh, M.R., Stone, N., and Martin, F.L., Using Raman spectroscopy to characterize biological materials. Nature Protocols, 2016. 11: p. 664-687.
47. Fleischmann, M., Hendra, P.J., and McQuillan, A.J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
48. Chen, C., Davoli, I., Ritchie, G., and Burstein, E., Giant Raman scattering and luminescence by molecules adsorbed on Ag and Au metal island films. Surface Science, 1980. 101(1-3): p. 363-366.
49. Moskovits, M. and Suh, J.S., The geometry of several molecular ions adsorbed on the surface of colloidal silver. The Journal of Physical Chemistry, 1984. 88(7): p. 1293-1298.
50. Tsang, J.C., Kirtley, J.R., and Bradley, J.A., Surface-Enhanced Raman Spectroscopy and Surface Plasmons. Physical Review Letters, 1979. 43(11): p. 772-775.
51. Dornhaus, R., Benner, R.E., Chang, R.K., and Chabay, I., Surface plasmon contribution to SERS. Surface Science, 1980. 101(1-3): p. 367-373.
52. Suh, J.S., DiLella, D.P., and Moskovits, M., Surface-enhanced Raman spectroscopy of colloidal metal systems: a two-dimensional phase equilibrium in p-aminobenzoic acid adsorbed on silver. The Journal of Physical Chemistry, 1983. 87(9): p. 1540-1544.
53. Miller, S.K., Baiker, A., Meier, M., and Wokaun, A., Surface-enhanced Raman scattering and the preparation of copper substrates for catalytic studies. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984. 80(5): p. 1305-1312.
54. Ladouceur, H.D., Tevault, D.E., and Smardzewski, R.R., Surface?enhanced Raman scattering from vapor?deposited copper, silver, and gold. Excitation profiles and temperature dependence. The Journal of Chemical Physics, 1983. 78(2): p. 980-985.
55. Weitz, D.A., Garoff, S., Gersten, J.I., and Nitzan, A., The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. The Journal of Chemical Physics, 1983. 78(9): p. 5324-5338.
56. Creighton, J.A., Blatchford, C.G., and Albrecht, M.G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1979. 75: p. 790-798.
57. Moody, R.L., Vo-Dinh, T., and Fletcher, W.H., Investigation of experimental parameters for surface-enhanced Raman scattering (SERS) using silver-coated microsphere substrates. Applied Spectroscopy, 1987. 41(6): p. 966-970.
58. Gupta, S., Banaszak, A., Smith, T., and Dimakis, N., Molecular sensitivity of metal nanoparticles decorated graphene?family nanomaterials as surface?enhanced Raman scattering (SERS) platforms. Journal of Raman Spectroscopy, 2018. 49(3): p. 438-451.
59. Chang, T.W., Wang, X., Mahigir, A., Veronis, G., Liu, G.L., and Gartia, M.R., Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy. ACS Sensors, 2017. 2(8): p. 1133-1138.
60. Campion, A. and Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
61. Guthmuller, J. and Champagne, B., Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects. The Journal of Physical Chemistry A, 2008. 112(14): p. 3215-3223.
62. Jensen, L. and Schatz, G.C., Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
63. Lombardi, J.R. and Birke, R.L., A Unified View of Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 2009. 42(6): p. 734-742.
64. Yilmaz, M., Babur, E., Ozdemir, M., Gieseking, R.L., Dede, Y., Tamer, U., Schatz, G.C., Facchetti, A., Usta, H., and Demirel, G., Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nature Materials, 2017. 16: p. 918-924.
65. Yu, X.x., Cai, H.b., Zhang, W.h., Li, X.j., Pan, N., Luo, Y., Wang, X.p., and Hou, J.G., Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS nano, 2011. 5(2): p. 952-958.
66. Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009. 323(5915): p. 760-764.
67. Ling, X., Fang, W., Lee, Y.H., Araujo, P.T., Zhang, X., Rodriguez-Nieva, J.F., Lin, Y., Zhang, J., Kong, J., and Dresselhaus, M.S., Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Letters, 2014. 14(6): p. 3033-3040.
68. Peiris, S., McMurtrie, J., and Zhu, H.Y., Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science & Technology, 2016. 6(2): p. 320-338.
69. Goul, R., Das, S., Liu, Q., Xin, M., Lu, R., Hui, R., and Wu, J.Z., Quantitative analysis of surface enhanced Raman spectroscopy of Rhodamine 6G using a composite graphene and plasmonic Au nanoparticle substrate. Carbon, 2017. 111: p. 386-392.
70. Stamplecoskie, K.G., Scaiano, J.C., Tiwari, V.S., and Anis, H., Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C, 2011. 115(5): p. 1403-1409.
71. Fan, W., Lee, Y.H., Pedireddy, S., Zhang, Q., Liu, T., and Ling, X.Y., Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale, 2014. 6(9): p. 4843-4851.
72. Hsueh, H.Y., Chen, H.Y., Ling, Y.C., Huang, W.S., Hung, Y.C., Gwo, S., and Ho, R.M., A polymer-based SERS-active substrate with gyroid-structured gold multibranches. Journal of Materials Chemistry C, 2014. 2(23): p. 4667-4675.
73. Spatz, J.P., Moller, M., Noeske, M., Behm, R.J., and Pietralla, M., Nanomosaic Surfaces by Lateral Phase Separation of a Diblock Copolymer. Macromolecules, 1997. 30(13): p. 3874-3880.
74. Jeong, J.W., Park, W.I., Kim, M.J., Ross, C.A., and Jung, Y.S., Highly Tunable Self-Assembled Nanostructures from a Poly(2-vinylpyridine-b-dimethylsiloxane) Block Copolymer. Nano Letters, 2011. 11(10): p. 4095-4101.
75. Yin, J., Yao, X., Liou, J.Y., Sun, W., Sun, Y.S., and Wang, Y., Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers. ACS Nano, 2013. 7(11): p. 9961-9974.
76. Chen, D., Park, S., Chen, J.T., Redston, E., and Russell, T.P., A simple route for the preparation of mesoporous nanostructures using block copolymers. ACS Nano, 2009. 3(9): p. 2827-2833.
77. Maldonado, S., Morin, S., and Stevenson, K.J., Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon, 2006. 44(8): p. 1429-1437.
78. Sun, Y.S., Huang, W.H., Liou, J.Y., Lu, Y.H., Shih, K.C., Lin, C.F., and Cheng, S.L., Conversion from self-assembled block copolymer nanodomains to carbon nanostructures with well-defined morphology. RSC Advances, 2015. 5(128): p. 105774-105784.
79. Sun, Y.S., Huang, W.H., Lin, C.F., and Cheng, S.L., Tailoring Carbon Nanostructure with Diverse and Tunable Morphology by the Pyrolysis of Self-Assembled Lamellar Nanodomains of a Block Copolymer. Langmuir, 2017. 33(8): p. 2003-2010.
80. Kline, S.R., Reduction and analysis of SANS and USANS data using IGOR Pro. Journal of Applied Crystallography, 2006. 39(6): p. 895-900.
81. Roe, R.J., Methods of X-Ray and neutron scattering in polymer science (Topics in polymer science). Oxford University Press, 2000. 9: p. 10-12.
82. Beaucage, G., Approximations leading to a unified exponential/power-law approach to small-angle scattering. Journal of Applied Crystallography, 1995. 28(6): p. 717-728.
83. Venkatachalam, R.S., Boerio, F.J., Roth, P.G., and Tsai, W.H., Surface?enhanced Raman scattering from bilayers of polystyrene, diglycidyl ether of bisphenol?A, poly (4?vinyl pyridine), and poly (4?styrene sulfonate). Journal of Polymer Science Part B: Polymer Physics, 1988. 26(12): p. 2447-2461.
84. McBreen, P.H. and Moskovits, M., A surface-enhanced Raman study of ethylene and oxygen interacting with supported silver catalysts. Journal of Catalysis, 1987. 103(1): p. 188-199.
85. Boerio, F.J., Tsai, W.H., Hong, P.P., and Montaudo, G., Selective oxidation of para-substituted polystyrenes during surface-enhanced Raman scattering. Macromolecules, 1989. 22(10): p. 3955-3960.
86. Aizawa, M. and Buriak, J.M., Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chemistry of Materials, 2007. 19(21): p. 5090-5101.
87. Saleh, M.S., Hu, C., and Panat, R., Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Science Advances, 2017. 3(3): p. e1601986(1-8).
88. Cai, W., Wang, W., Yang, Y., Ren, G., and Chen, T., Sulfonated polystyrene spheres as template for fabricating hollow compact silver spheres via silver–mirror reaction at low temperature. RSC Adv., 2014. 4(5): p. 2295-2299.
89. Yang, B., Liu, Z., Guo, Z., Zhang, W., Wan, M., Qin, X., and Zhong, H., In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Applied Surface Science, 2014. 316: p. 22-27.
90. Wang, Z.B., Luk′yanchuk, B.S., Guo, W., Edwardson, S.P., Whitehead, D.J., Li, L., Liu, Z., and Watkins, K.G., The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. J Chem Phys, 2008. 128(9): p. 094705(1-5).
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2018-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明