參考文獻 |
1. Piner, R.D., Zhu, J., Xu, F., Hong, S., and Mirkin, C.A., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663.
2. Chen, Z., He, C., Li, F., Tong, L., Liao, X., and Wang, Y., Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing. Langmuir, 2010. 26(11): p. 8869-74.
3. Wang, Y., Tong, L., and Steinhart, M., Swelling-Induced Morphology Reconstruction in Block Copolymer Nanorods: Kinetics and Impact of Surface Tension During Solvent Evaporation. ACS Nano, 2011. 5(3): p. 1928-1938.
4. 林建甫, 富含氮奈米碳材製備與拉曼光譜增強基之應用. 碩士論文, 2016.
5. 張智堯, 聚苯乙烯聚4-乙烯?啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究. 碩士論文, 2011.
6. 劉峻佑, Tailoring Nanostructures of Dibolck Copolymer by Photochemistry and Its Applications in Spartial Control of Ag and Ag@Au Nanoparticles. 博士論文, 2015.
7. Sun, Y.S., Lin, C.F., Luo, S.T., and Su, C.Y., Block-Copolymer-Templated Hierarchical Porous Carbon Nanostructures with Nitrogen-Rich Functional Groups for Molecular Sensing. ACS Appl Mater Interfaces, 2017. 9(37): p. 31235-31244.
8. Bates, F.S. and Fredrickson, G.H., Block copolymers-designer soft materials. Physics Today, 2000.
9. Chavis Michelle, A., M., S.D., Wiesner Ulrich, B., and Ober Christopher, K., Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents. Advanced Functional Materials, 2015. 25(20): p. 3057-3065.
10. Tavakkoli, K., Hannon, A.F., Gotrik, K.W., Alexander?Katz, A., Ross, C.A., and Berggren, K.K., Rectangular symmetry morphologies in a topographically templated block copolymer. Advanced Materials, 2012. 24(31): p. 4249-4254.
11. Sinturel, C., Vayer, M.n., Morris, M., and Hillmyer, M.A., Solvent vapor annealing of block polymer thin films. Macromolecules, 2013. 46(14): p. 5399-5415.
12. Bates, F.S. and Fredrickson, G.H., Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry, 1990. 41(1): p. 525-557.
13. Tseng, Y.C. and Darling, S.B., Block Copolymer Nanostructures for Technology. Polymers, 2010. 2(4): p. 470-489.
14. Mansky, P., Russell, T.P., Hawker, C.J., Pitsikalis, M., and Mays, J., Ordered Diblock Copolymer Films on Random Copolymer Brushes. Macromolecules, 1997. 30(22): p. 6810-6813.
15. Mansky, P., Russell, T.P., Hawker, C.J., Mays, J., Cook, D.C., and Satija, S.K., Interfacial segregation in disordered block copolymers: effect of tunable surface potentials. Physical Review Letters, 1997. 79(2): p. 237-240.
16. Sivaniah, E., Hayashi, Y., Iino, M., Hashimoto, T., and Fukunaga, K., Observation of perpendicular orientation in symmetric diblock copolymer thin films on rough substrates. Macromolecules, 2003. 36(16): p. 5894-5896.
17. Park, S., Lee, D.H., Xu, J., Kim, B., Hong, S.W., Jeong, U., Xu, T., and Russell, T.P., Macroscopic 10-terabit–per–square-inch arrays from block copolymers with lateral order. Science, 2009. 323(5917): p. 1030-1033.
18. Morkved, T.L. and Jaeger, H.M., Thickness-induced morphology changes in lamellar diblock copolymer ultrathin films. Europhysics Letters, 1997. 40(6): p. 643-648.
19. Knoll, A., Horvat, A., Lyakhova, K.S., Krausch, G., Sevink, G.J.A., Zvelindovsky, A.V., and Magerle, R., Phase behavior in thin films of cylinder-forming block copolymers. Physical Review Letters, 2002. 89(3): p. 035501(1-4).
20. Hamley, I.W., Ordering in thin films of block copolymers: Fundamentals to potential applications. Progress in Polymer Science, 2009. 34(11): p. 1161-1210.
21. Nicolai, T., Colombani, O., and Chassenieux, C., Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter, 2010. 6(14): p. 3111-3118.
22. Loh, W., Block copolymer micelles. Encyclopedia of Surface and Colloid Science, 2006: p. 802-813.
23. Zhang, X., Douglas, J.F., Satija, S., and Karim, A., Enhanced vertical ordering of block copolymer films by tuning molecular mass. RSC Advances, 2015. 5(41): p. 32307-32318.
24. Kennemur, J.G., Hillmyer, M.A., and Bates, F.S., Synthesis, Thermodynamics, and Dynamics of Poly (4-tert-butylstyrene-b-methyl methacrylate). Macromolecules, 2012. 45(17): p. 7228-7236.
25. Stein, G.E., Liddle, J.A., Aquila, A.L., and Gullikson, E.M., Measuring the structure of epitaxially assembled block copolymer domains with soft X-ray diffraction. Macromolecules, 2009. 43(1): p. 433-441.
26. Gu, W., Huh, J., Hong, S.W., Sveinbjornsson, B.R., Park, C., Grubbs, R.H., and Russell, T.P., Self-Assembly of Symmetric Brush Diblock Copolymers. ACS Nano, 2013. 7(3): p. 2551-2558.
27. Kim, E., Ahn, H., Park, S., Lee, H., Lee, M., Lee, S., Kim, T., Kwak, E.-A., Lee, J.H., Lei, X., Huh, J., Bang, J., Lee, B., and Ryu, D.Y., Directed Assembly of High Molecular Weight Block Copolymers: Highly Ordered Line Patterns of Perpendicularly Oriented Lamellae with Large Periods. ACS Nano, 2013. 7(3): p. 1952-1960.
28. Stafford, C.M., Russell, T.P., and McCarthy, T.J., Expansion of Polystyrene Using Supercritical Carbon Dioxide:? Effects of Molecular Weight, Polydispersity, and Low Molecular Weight Components. Macromolecules, 1999. 32(22): p. 7610-7616.
29. Lai, C., Russel, W.B., and Register, R.A., Scaling of Domain Spacing in Concentrated Solutions of Block Copolymers in Selective Solvents. Macromolecules, 2002. 35(10): p. 4044-4049.
30. Gu, X., Gunkel, I., Hexemer, A., Gu, W., and Russell, T.P., An in situ grazing incidence X-ray scattering study of block copolymer thin films during solvent vapor annealing. Adv Mater, 2014. 26(2): p. 273-281.
31. Shibayama, M., Hashimoto, T., Hasegawa, H., and Kawai, H., Ordered structure in block polymer solutions. 3. Concentration dependence of microdomains in nonselective solvents. Macromolecules, 1983. 16(9): p. 1427-1433.
32. Kim, G. and Libera, M., Morphological development in solvent-cast polystyrene? polybutadiene? polystyrene (SBS) triblock copolymer thin films. Macromolecules, 1998. 31(8): p. 2569-2577.
33. Xu, T., Stevens, J., Villa, J.A., Goldbach, J.T., Guarini, K.W., Black, C.T., Hawker, C.J., and Russell, T.P., Block Copolymer Surface Reconstuction: A Reversible Route to Nanoporous Films. Advanced Functional Materials, 2003. 13(9): p. 698-702.
34. Wang, Y., Gosele, U., and Steinhart, M., Mesoporous Block Copolymer Nanorods by Swelling-Induced Morphology Reconstruction. Nano Letters, 2008. 8(10): p. 3548-3553.
35. Nunes, S.P., Behzad, A.R., Hooghan, B., Sougrat, R., Karunakaran, M., Pradeep, N., Vainio, U., and Peinemann, K.V., Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly. ACS Nano, 2011. 5(5): p. 3516-3522.
36. Kim, M.P., Kim, H.J., Kim, B.J., and Yi, G.R., Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions. Nanotechnology, 2015. 26(9): p. 095302(1-7).
37. T., R.A., X., L., J., W., A., S.W., and H., F., Facile Synthesis of Nanostructured Carbon through Self-Assembly between Block Copolymers and Carbohydrates. Advanced Functional Materials, 2007. 17(15): p. 2710-2716.
38. Soumyadip, C., Dieter, F., Petr, F., Manfred, S., and Leonid, I., Phase Inversion Strategy to Fabricate Porous Carbon for Li-S Batteries via Block Copolymer Self-Assembly. Advanced Materials Interfaces, 2018. 5(5): p. 1701116(1-11).
39. Ang, Z., Ting, Q., Shubo, C., Yayuan, L., Yongbin, Z., and Aihua, C., Vapor-Phase Polymerization and Carbonization to Nitrogen-Doped Carbon Nanoscale Networks with Designable Pore Geometries Templated from Block Copolymers. Advanced Materials Interfaces, 2018. 5(5): p. 1701390(1-9).
40. Choudhury, S., Agrawal, M., Formanek, P., Jehnichen, D., Fischer, D., Krause, B., Albrecht, V., Stamm, M., and Ionov, L., Nanoporous cathodes for high-energy Li–S batteries from gyroid block copolymer templates. ACS Nano, 2015. 9(6): p. 6147-6157.
41. Jang, Y.H., Chung, K., Quan, L.N., ?pa?kova, B., ?ipova, H., Moon, S., Cho, W.J., Shin, H.Y., Jang, Y.J., and Lee, J.E., Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors. Nanoscale, 2013. 5(24): p. 12261-12271.
42. Cho, W.J., Kim, Y., and Kim, J.K., Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS nano, 2011. 6(1): p. 249-255.
43. Chen, X., Perepichka, I.I., and Bazuin, C.G., Double-Striped Metallic Patterns from PS-b-P4VP Nanostrand Templates. ACS Applied Materials & Interfaces, 2014. 6(20): p. 18360-18367.
44. Hsueh, H.Y., Huang, Y.C., Ho, R.M., Lai, C.H., Taichi, M., and Hirokazu, H., Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. Advanced Materials, 2011. 23(27): p. 3041-3046.
45. Gardiner, D., Graves, R., Practical Raman Spectroscopy. Springer-Verlag, 1989.
46. Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N.J., Gardner, B., Martin-Hirsch, P.L., Walsh, M.J., McAinsh, M.R., Stone, N., and Martin, F.L., Using Raman spectroscopy to characterize biological materials. Nature Protocols, 2016. 11: p. 664-687.
47. Fleischmann, M., Hendra, P.J., and McQuillan, A.J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
48. Chen, C., Davoli, I., Ritchie, G., and Burstein, E., Giant Raman scattering and luminescence by molecules adsorbed on Ag and Au metal island films. Surface Science, 1980. 101(1-3): p. 363-366.
49. Moskovits, M. and Suh, J.S., The geometry of several molecular ions adsorbed on the surface of colloidal silver. The Journal of Physical Chemistry, 1984. 88(7): p. 1293-1298.
50. Tsang, J.C., Kirtley, J.R., and Bradley, J.A., Surface-Enhanced Raman Spectroscopy and Surface Plasmons. Physical Review Letters, 1979. 43(11): p. 772-775.
51. Dornhaus, R., Benner, R.E., Chang, R.K., and Chabay, I., Surface plasmon contribution to SERS. Surface Science, 1980. 101(1-3): p. 367-373.
52. Suh, J.S., DiLella, D.P., and Moskovits, M., Surface-enhanced Raman spectroscopy of colloidal metal systems: a two-dimensional phase equilibrium in p-aminobenzoic acid adsorbed on silver. The Journal of Physical Chemistry, 1983. 87(9): p. 1540-1544.
53. Miller, S.K., Baiker, A., Meier, M., and Wokaun, A., Surface-enhanced Raman scattering and the preparation of copper substrates for catalytic studies. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984. 80(5): p. 1305-1312.
54. Ladouceur, H.D., Tevault, D.E., and Smardzewski, R.R., Surface?enhanced Raman scattering from vapor?deposited copper, silver, and gold. Excitation profiles and temperature dependence. The Journal of Chemical Physics, 1983. 78(2): p. 980-985.
55. Weitz, D.A., Garoff, S., Gersten, J.I., and Nitzan, A., The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. The Journal of Chemical Physics, 1983. 78(9): p. 5324-5338.
56. Creighton, J.A., Blatchford, C.G., and Albrecht, M.G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1979. 75: p. 790-798.
57. Moody, R.L., Vo-Dinh, T., and Fletcher, W.H., Investigation of experimental parameters for surface-enhanced Raman scattering (SERS) using silver-coated microsphere substrates. Applied Spectroscopy, 1987. 41(6): p. 966-970.
58. Gupta, S., Banaszak, A., Smith, T., and Dimakis, N., Molecular sensitivity of metal nanoparticles decorated graphene?family nanomaterials as surface?enhanced Raman scattering (SERS) platforms. Journal of Raman Spectroscopy, 2018. 49(3): p. 438-451.
59. Chang, T.W., Wang, X., Mahigir, A., Veronis, G., Liu, G.L., and Gartia, M.R., Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy. ACS Sensors, 2017. 2(8): p. 1133-1138.
60. Campion, A. and Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
61. Guthmuller, J. and Champagne, B., Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects. The Journal of Physical Chemistry A, 2008. 112(14): p. 3215-3223.
62. Jensen, L. and Schatz, G.C., Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
63. Lombardi, J.R. and Birke, R.L., A Unified View of Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 2009. 42(6): p. 734-742.
64. Yilmaz, M., Babur, E., Ozdemir, M., Gieseking, R.L., Dede, Y., Tamer, U., Schatz, G.C., Facchetti, A., Usta, H., and Demirel, G., Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nature Materials, 2017. 16: p. 918-924.
65. Yu, X.x., Cai, H.b., Zhang, W.h., Li, X.j., Pan, N., Luo, Y., Wang, X.p., and Hou, J.G., Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS nano, 2011. 5(2): p. 952-958.
66. Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009. 323(5915): p. 760-764.
67. Ling, X., Fang, W., Lee, Y.H., Araujo, P.T., Zhang, X., Rodriguez-Nieva, J.F., Lin, Y., Zhang, J., Kong, J., and Dresselhaus, M.S., Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Letters, 2014. 14(6): p. 3033-3040.
68. Peiris, S., McMurtrie, J., and Zhu, H.Y., Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science & Technology, 2016. 6(2): p. 320-338.
69. Goul, R., Das, S., Liu, Q., Xin, M., Lu, R., Hui, R., and Wu, J.Z., Quantitative analysis of surface enhanced Raman spectroscopy of Rhodamine 6G using a composite graphene and plasmonic Au nanoparticle substrate. Carbon, 2017. 111: p. 386-392.
70. Stamplecoskie, K.G., Scaiano, J.C., Tiwari, V.S., and Anis, H., Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C, 2011. 115(5): p. 1403-1409.
71. Fan, W., Lee, Y.H., Pedireddy, S., Zhang, Q., Liu, T., and Ling, X.Y., Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale, 2014. 6(9): p. 4843-4851.
72. Hsueh, H.Y., Chen, H.Y., Ling, Y.C., Huang, W.S., Hung, Y.C., Gwo, S., and Ho, R.M., A polymer-based SERS-active substrate with gyroid-structured gold multibranches. Journal of Materials Chemistry C, 2014. 2(23): p. 4667-4675.
73. Spatz, J.P., Moller, M., Noeske, M., Behm, R.J., and Pietralla, M., Nanomosaic Surfaces by Lateral Phase Separation of a Diblock Copolymer. Macromolecules, 1997. 30(13): p. 3874-3880.
74. Jeong, J.W., Park, W.I., Kim, M.J., Ross, C.A., and Jung, Y.S., Highly Tunable Self-Assembled Nanostructures from a Poly(2-vinylpyridine-b-dimethylsiloxane) Block Copolymer. Nano Letters, 2011. 11(10): p. 4095-4101.
75. Yin, J., Yao, X., Liou, J.Y., Sun, W., Sun, Y.S., and Wang, Y., Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers. ACS Nano, 2013. 7(11): p. 9961-9974.
76. Chen, D., Park, S., Chen, J.T., Redston, E., and Russell, T.P., A simple route for the preparation of mesoporous nanostructures using block copolymers. ACS Nano, 2009. 3(9): p. 2827-2833.
77. Maldonado, S., Morin, S., and Stevenson, K.J., Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon, 2006. 44(8): p. 1429-1437.
78. Sun, Y.S., Huang, W.H., Liou, J.Y., Lu, Y.H., Shih, K.C., Lin, C.F., and Cheng, S.L., Conversion from self-assembled block copolymer nanodomains to carbon nanostructures with well-defined morphology. RSC Advances, 2015. 5(128): p. 105774-105784.
79. Sun, Y.S., Huang, W.H., Lin, C.F., and Cheng, S.L., Tailoring Carbon Nanostructure with Diverse and Tunable Morphology by the Pyrolysis of Self-Assembled Lamellar Nanodomains of a Block Copolymer. Langmuir, 2017. 33(8): p. 2003-2010.
80. Kline, S.R., Reduction and analysis of SANS and USANS data using IGOR Pro. Journal of Applied Crystallography, 2006. 39(6): p. 895-900.
81. Roe, R.J., Methods of X-Ray and neutron scattering in polymer science (Topics in polymer science). Oxford University Press, 2000. 9: p. 10-12.
82. Beaucage, G., Approximations leading to a unified exponential/power-law approach to small-angle scattering. Journal of Applied Crystallography, 1995. 28(6): p. 717-728.
83. Venkatachalam, R.S., Boerio, F.J., Roth, P.G., and Tsai, W.H., Surface?enhanced Raman scattering from bilayers of polystyrene, diglycidyl ether of bisphenol?A, poly (4?vinyl pyridine), and poly (4?styrene sulfonate). Journal of Polymer Science Part B: Polymer Physics, 1988. 26(12): p. 2447-2461.
84. McBreen, P.H. and Moskovits, M., A surface-enhanced Raman study of ethylene and oxygen interacting with supported silver catalysts. Journal of Catalysis, 1987. 103(1): p. 188-199.
85. Boerio, F.J., Tsai, W.H., Hong, P.P., and Montaudo, G., Selective oxidation of para-substituted polystyrenes during surface-enhanced Raman scattering. Macromolecules, 1989. 22(10): p. 3955-3960.
86. Aizawa, M. and Buriak, J.M., Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chemistry of Materials, 2007. 19(21): p. 5090-5101.
87. Saleh, M.S., Hu, C., and Panat, R., Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Science Advances, 2017. 3(3): p. e1601986(1-8).
88. Cai, W., Wang, W., Yang, Y., Ren, G., and Chen, T., Sulfonated polystyrene spheres as template for fabricating hollow compact silver spheres via silver–mirror reaction at low temperature. RSC Adv., 2014. 4(5): p. 2295-2299.
89. Yang, B., Liu, Z., Guo, Z., Zhang, W., Wan, M., Qin, X., and Zhong, H., In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Applied Surface Science, 2014. 316: p. 22-27.
90. Wang, Z.B., Luk′yanchuk, B.S., Guo, W., Edwardson, S.P., Whitehead, D.J., Li, L., Liu, Z., and Watkins, K.G., The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. J Chem Phys, 2008. 128(9): p. 094705(1-5). |