參考文獻 |
[1] Cooper, TechNews-Tesla碰撞起火,電動車安全問題再度被提出, http://technews.tw/2013/10/03/tesla-on-fire/ (2013).
[2] 劉季清, 三星正式說明:三大原因造成Galaxy Note 7事故, http://3c.ltn.com.tw/news/28440 (2017).
[3] http://www.ifuun.com/a20179185349869/.
[4] K. Mizushima, P. Jones, P. Wiseman, J.B. Goodenough, LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin 15(6) (1980) 783-789.
[5] T. Ohzuku, R.J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries, Journal of Power Sources 174(2) (2007) 449-456.
[6] A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamaura, M. Takano, K. Ohyama, M. Ohashi, Y. Yamaguchi, Relationship between non-stoichiometry and physical properties in LiNiO2, Solid State Ionics 78(1-2) (1995) 123-131.
[7] A. Yamada, M. Tanaka, Jahn-Teller structural phase transition around 280K in LiMn2O4, Materials Research Bulletin 30(6) (1995) 715-721.
[8] F. Zhou, K. Kang, T. Maxisch, G. Ceder, D. Morgan, The electronic structure and band gap of LiFePO4 and LiMnPO4, Solid State Communications 132(3-4) (2004) 181-186.
[9] L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough, Development and challenges of LiFePO 4 cathode material for lithium-ion batteries, Energy & Environmental Science 4(2) (2011) 269-284.
[10] C.-H. Chen, C.-J. Wang, B.-J. Hwang, Electrochemical performance of layered Li [NixCo1− 2xMnx] O2 cathode materials synthesized by a sol–gel method, Journal of Power Sources 146(1-2) (2005) 626-629.
[11] M. Gozu, K. Świerczek, J. Molenda, Structural and transport properties of layered Li1+ x (Mn1/3Co1/3Ni1/3) 1− xO2 oxides prepared by a soft chemistry method, Journal of Power Sources 194(1) (2009) 38-44.
[12] R. Rauh, S. Brummer, The effect of additives on lithium cycling in methyl acetate, Electrochimica Acta 22(1) (1977) 85-91.
[13] Y. Geronov, B. Puresheva, R. Moshtev, P. Zlatilova, T. Kosev, Z. Stoynov, G. Pistoia, M. Pasquali, Rechargeable Compact Li Cells with Li x Cr0. 9 V 0.1 S 2 and Li1+ x V 3 O 8 Cathodes and Ether‐Based Electrolytes, Journal of The Electrochemical Society 137(11) (1990) 3338-3344.
[14] R. Fong, U. Von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, Journal of The Electrochemical Society 137(7) (1990) 2009-2013.
[15] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical Reviews 104(10) (2004) 4303-4418.
[16] M. Ue, Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ‐butyrolactone, Journal of The Electrochemical Society 141(12) (1994) 3336-3342.
[17] C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries, Journal of The Electrochemical Society 152(12) (2005) A2327-A2334.
[18] E. Roth, D. Doughty, Thermal abuse performance of high-power 18650 Li-ion cells, Journal of Power Sources 128(2) (2004) 308-318.
[19] E.P. Roth, Abuse response of 18650 Li-ion cells with different cathodes using EC: EMC/LiPF6 and EC: PC: DMC/LiPF6 electrolytes, ECS Transactions 11(19) (2008) 19-41.
[20] D. MacNeil, D. Larcher, J. Dahn, Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature, Journal of The Electrochemical Society 146(10) (1999) 3596-3602.
[21] D. Belov, M.-H. Yang, Failure mechanism of Li-ion battery at overcharge conditions, Journal of Solid State Electrochemistry 12(7-8) (2008) 885-894.
[22] T. Yoshida, K. Kitoh, S. Ohtsubo, W. Shionoya, H. Katsukawa, J.-i. Yamaki, Safety performance of large and high-power lithium-ion batteries with manganese spinel and meso carbon fiber, Electrochemical and Solid-State Letters 10(3) (2007) A60-A64.
[23] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta 50(2-3) (2004) 247-254.
[24] D.-Y. Lee, H.-S. Lee, H.-S. Kim, H.-Y. Sun, D.-Y. Seung, Redox shuttle additives for chemical overcharge protection in lithium ion batteries, Korean Journal of Chemical Engineering 19(4) (2002) 645-652.
[25] S. Narayanan, S. Surampudi, A. Attia, C. Bankston, Analysis of Redox Additive‐Based Overcharge Protection for Rechargeable Lithium Batteries, Journal of The Electrochemical Society 138(8) (1991) 2224-2229.
[26] T.J. Richardson, P.N. Ross, Overcharge protection for rechargeable lithium polymer electrolyte batteries, Journal of The Electrochemical Society 143(12) (1996) 3992-3996.
[27] G.E. Blomgren, Liquid electrolytes for lithium and lithium-ion batteries, Journal of Power Sources 119 (2003) 326-329.
[28] H. Mao, D.S. Wainwright, Polymerizable additives for making non-aqueous rechargeable lithium batteries safe after overcharge, Google Patents, 2000.
[29] R.J. Waltman, A. Diaz, J. Bargon, Electroactive properties of polyaromatic molecules, Journal of The Electrochemical Society 131(4) (1984) 740-744.
[30] X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties, Journal of The Electrochemical Society 148(10) (2001) A1058-A1065.
[31] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate, Journal of The Electrochemical Society 149(8) (2002) A1079-A1082.
[32] K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes, Journal of The Electrochemical Society 149(5) (2002) A622-A626.
[33] M.S. Ding, K. Xu, T.R. Jow, Effects of tris (2, 2, 2-trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of LiPF6 in EC-PC-EMC of 3: 3: 4 weight ratios, Journal of The Electrochemical Society 149(11) (2002) A1489-A1498.
[34] X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The use of an amorphous carbon anode, Journal of The Electrochemical Society 148(10) (2001) A1066-A1071.
[35] A. Granzow, Flame retardation by phosphorus compounds, Accounts of Chemical Research 11(5) (1978) 177-183.
[36] T. Kashiwagi, J.W. Gilman, K.M. Butler, R.H. Harris, J.R. Shields, A. Asano, Flame retardant mechanism of silica gel/silica, Fire and Materials 24(6) (2000) 277-289.
[37] K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties, Journal of The Electrochemical Society 150(2) (2003) A161-A169.
[38] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: II. Performance in cell, Journal of The Electrochemical Society 150(2) (2003) A170-A175.
[39] Y. Ein‐Eli, S.F. McDevitt, D. Aurbach, B. Markovsky, A. Schechter, Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes, Journal of The Electrochemical Society 144(7) (1997) L180-L184.
[40] D. Aurbach, M.D. Levi, E. Levi, A. Schechter, Failure and stabilization mechanisms of graphite electrodes, The Journal of Physical Chemistry B 101(12) (1997) 2195-2206.
[41] N. Dupre, J.-F. Martin, J. Oliveri, P. Soudan, D. Guyomard, A. Yamada, R. Kanno, Aging of the LiNi1/2Mn1/2O2 Positive Electrode Interface in Electrolyte, Journal of The Electrochemical Society 156(5) (2009) C180-C185.
[42] A. Würsig, H. Buqa, M. Holzapfel, F. Krumeich, P. Novák, Film formation at positive electrodes in lithium-Ion batteries, Electrochemical and Solid-State Letters 8(1) (2005) A34-A37.
[43] P. He, X. Zhang, Y.-G. Wang, L. Cheng, Y.-Y. Xia, Lithium-ion intercalation behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions, Journal of The Electrochemical Society 155(2) (2008) A144-A150.
[44] Z. Wang, Y. Sun, L. Chen, X. Huang, Electrochemical Characterization of Positive Electrode Material LiNi1/3Co1/3Mn1/3O2 and Compatibility with Electrolyte for Lithium-Ion Batteries, Journal of The Electrochemical Society 151(6) (2004) A914-A921.
[45] Z. Wang, X. Huang, L. Chen, Characterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithium-ion batteries, Journal of The Electrochemical Society 151(10) (2004) A1641-A1652.
[46] P. Goonetilleke, J. Zheng, D. Roy, Effects of surface-film formation on the electrochemical characteristics of LiMn2O4 cathodes of lithium ion batteries, Journal of The Electrochemical Society 156(9) (2009) A709-A719.
[47] L. Yang, B. Ravdel, B.L. Lucht, Electrolyte reactions with the surface of high voltage LiNi0. 5Mn1. 5O4 cathodes for lithium-ion batteries, Electrochemical and Solid-State Letters 13(8) (2010) A95-A97.
[48] G. Li, H. Li, Y. Mo, L. Chen, X. Huang, Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS), Journal of Power Sources 104(2) (2002) 190-194.
[49] D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources 89(2) (2000) 206-218.
[50] Y.-C. Yen, S.-C. Chao, H.-C. Wu, N.-L. Wu, Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells, Journal of The Electrochemical Society 156(2) (2009) A95-A102.
[51] Z. Wang, L. Xing, J. Li, M. Xu, W. Li, Triethylborate as an electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery, Journal of Power Sources 307 (2016) 587-592.
[52] J. Chen, Y. Gao, C. Li, H. Zhang, J. Liu, Q. Zhang, Interface modification in high voltage spinel lithium-ion battery by using N-methylpyrrole as an electrolyte additive, Electrochimica Acta 178 (2015) 127-133.
[53] Y.-M. Song, C.-K. Kim, K.-E. Kim, S.Y. Hong, N.-S. Choi, Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0. 5Mn1. 5O4 cathodes, Journal of Power Sources 302 (2016) 22-30.
[54] H. Xiang, H. Xu, Z. Wang, C. Chen, Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes, Journal of Power Sources 173(1) (2007) 562-564.
[55] I.A. Mohammed, A. Mustapha, Synthesis of new azo compounds based on N-(4-hydroxypheneyl) maleimide and N-(4-methylpheneyl) maleimide, Molecules 15(10) (2010) 7498-7508.
[56] 湯仁忠, 聚醯亞胺複合材料及含磷雙馬來醯亞胺耐燃材料之製備與性質探討, 中原大學化學研究所學位論文 (2006) 1-200.
[57] 張育豪, 改善鋰離子電池電性之新穎電解液添加劑, 國立中央大學化學學系碩士論文 (2016). |