博碩士論文 105223029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.15.5.186
姓名 謝侑璇(Yu-Hsuan Hsieh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用新型電解液添加劑提升鋰離子電池的電性表現以及安全性
(Novel electrolyte additives improve electrochemical performance and safety for lithium ion battery)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鋰離子電池在安全性一直是受矚目的重要課題之一。由於高耗能3C隨身產品以及電動汽機車(HEV、EV)的快速發展,鋰離子電池能量密度和電容量的需求也不斷提升。為了應用在高耗能的電池上,容易發生活性材料碎裂造成循環壽命不佳,或是電解液在高溫下會分解以及容易燃燒,因此解決鋰離子電池的循環壽命不足以及安全性問題更為迫切。先前研究指出,鋰離子電池電解液會因為在充放電循環下,與活性物質發生反應,而造成電解液中鋰鹽分解,釋放大量的熱。在過度充電和過熱條件下時,正極材料容易產生氧氣,使電池內部壓力提高,而活性氧氣也會與電解液反應,產生熱量使溫度提升,可能造成電池的危害,伴隨著電解液的燃燒甚至是爆炸等安全問題。
在電解液中含有添加劑有助於改善安全性問題,故本研究為了提升鋰離子電池的性能,利用兩種新型電解液添加劑mPhMI和p-PhMI來延長電池的循環壽命以及增加安全性。mPhMI為由含磷的雙馬來醯亞胺(BMI)化合物,Bis(4-meleimido phenoxy)phenyl phosphine oxide (PhMI),與自由基捕捉劑1,3-二甲基巴比妥酸(1,3-DBTA)進行共聚合反應;而p-PhMI為PhMI單體獨自進行聚合反應的高分子。在共聚物mPhMI此添加劑具有PhMI分子含有磷原子,可減少氧分子釋放和抑制或延緩電解液分解情況發生,而1,3-DBTA有額外的功能可捕捉自由基阻止燃燒反應。這兩種添加劑的優勢在電極上形成穩定的SEI層,來改善電池長圈數電性與增加安全性。以添加劑修飾NMC材料實驗中的循環壽命測試,添加mPhMI和p-PhMI的電池在第80圈充放電後電容量分別保持在96.04%與90.59%。從變速率充放電圖中,使用mPhMI添加劑具有最佳的可逆電容量,其高達96.29%。更進一步由XPS光譜分析添加劑對SEI層影響,證實添加劑有降低電解液鋰鹽的分解。以及利用SEM觀測極片表面的型態,在100圈充放電後SEI仍然維持孔隙並沒有太大變化。
摘要(英) Safety is the primary issues in all aspects of lithium ion battery applications. This issue is becoming even more important with the increasing adaption for advanced electronic devices and in electric car applications where higher power and energy density are required. Longer cycle life, stable high temperature performance and safety in these advances lithium ion batteries become highly critical. It is known that electrolyte will react with the active material under the charge/discharge cycle, causing the lithium salt in the electrolyte to decompose which releases heat. In over-charging and over-heating conditions, the cathode material releases oxygen which increases internal pressure and further raised the cell temperature. This which eventually causes the breakdown (termination) of the battery, or even worse causes the cell to burst and explode, accompanying with burning of the released electrolytes.
In this study, we will exam the boosting of performance on lithium battery by two new types of electrolyte additives; mPhMI and p-PhMI in terms of lengthening cycle life stability and improving safety. While mPhMI is prepared by copolymerization of 1,3-dimethyl-barbituric acid (1,3-DBTA) with Bis(4-meleimido phenoxy)phenyl phosphine oxide (PhMI), p-PhMI is the homo-polymerization of PhMI monomers alone. In the copolymer mPhMI, phosphorus atoms in PhMI unit can reduce the release of oxygen and inhibit the electrolyte decomposition, and 1,3-DBTA is found to serve additional function to capture free radicals which hinders the combustion reaction. These additives have the advantage of forming a stable SEI layer over coating the electrode to improve the lithium battery long cycle performance and improve safety. The cycle life test shows that with the addition of mPhMI and p-PhMI in the electrode, the capacity retention are 86.93% and 90.59%, respectively after 80 cycles. The XPS spectrum provides the direct evidence to the reduction of lithium salt decomposition on the SEI layer in presence of the electrolyte additives. SEM study also suggested negligible change of the pore structure on surface of the SEI layer and the development of crack on cathode particles, after 100 repeated cycles in presence of these electrolyte additives.
關鍵字(中) ★ 鋰離子電池
★ 添加劑
★ 安全性
關鍵字(英)
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 x
表目錄 xiv
第一章緒論 1
1-1 研究背景 1
1-2 鋰離子電池基本工作原理 3
1-3 研究動機與目的 5
第二章文獻回顧 6
2-1 正極材料特性介紹 6
2-2 鋰離子電池之液態電解液 9
2-2-1 電解液組成 10
2-2-2 電解液之化學及熱穩定性 14
2-3 鋰離子電池安全性問題 16
2-3-1 熱爆衝 16
2-3-2 物理損壞 18
2-3-3 過度充放電 19
2-3-4 短路 20
2-3-5 提升電池安全性之方法 20
2-4 固態電解質界面(SEI) 24
2-4-1 SEI形成機制 25
2-4-2 正極表面鈍化層 26
2-4-3 SEI之鑑定方法 29
2-5 電解液添加劑 34
2-5-1 硼系添加劑 35
2-5-2 氮系添加劑 37
2-5-3 磷系添加劑 39
第三章實驗 41
3-1實驗藥品、器材與儀器設備 41
3-1-1 實驗藥品 41
3-1-2 實驗器材 44
3-1-3 實驗儀器設備 44
3-2 實驗方法 46
3-2-1 N-(4-Hydroxyphenyl)maleimide (4HPMI)之製備 47
3-2-2 Bis(4-meleimido phenoxy)phenyl phosphine oxide (PhMI)之製備 48
3-2-3 添加劑製備 49
3-2-4 電解液添加劑配置 50
3-2-5 添加劑修飾正極材料之極片製作 51
3-2-6 鈕扣型電池組裝 51
第四章結果與討論 53
4-1 添加劑合成與物性探討 53
4-1-1 添加劑合成鑑定 53
4-1-2 添加劑在電解液中的溶解度及導電度 63
4-2 電解液添加劑在正極的探討 65
4-2-1 室溫下之電性測試 65
4-2-2循環伏安法測試 67
4-2-3 掃描式電子顯微鏡之電極表面型態分析 69
4-2-4 X-光光電子能譜儀之鈍化層探討 71
4-2-5 內阻抗測試 73
4-3 添加劑修飾正極的探討 77
4-3-1 室溫下之電性測試 77
4-3-2 變速率充放電測試 80
4-3-3 循環伏安法測試 82
4-3-4 掃描式電子顯微鏡之電極表面型態分析 84
4-3-5 X-光光電子能譜儀之鈍化層探討 86
4-3-6 內阻抗測試 88
4-3-7 燃燒測試 90
第五章結論與未來展望 91
參考文獻 93
參考文獻 [1] Cooper, TechNews-Tesla碰撞起火,電動車安全問題再度被提出, http://technews.tw/2013/10/03/tesla-on-fire/ (2013).
[2] 劉季清, 三星正式說明:三大原因造成Galaxy Note 7事故, http://3c.ltn.com.tw/news/28440 (2017).
[3] http://www.ifuun.com/a20179185349869/.
[4] K. Mizushima, P. Jones, P. Wiseman, J.B. Goodenough, LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin 15(6) (1980) 783-789.
[5] T. Ohzuku, R.J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries, Journal of Power Sources 174(2) (2007) 449-456.
[6] A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamaura, M. Takano, K. Ohyama, M. Ohashi, Y. Yamaguchi, Relationship between non-stoichiometry and physical properties in LiNiO2, Solid State Ionics 78(1-2) (1995) 123-131.
[7] A. Yamada, M. Tanaka, Jahn-Teller structural phase transition around 280K in LiMn2O4, Materials Research Bulletin 30(6) (1995) 715-721.
[8] F. Zhou, K. Kang, T. Maxisch, G. Ceder, D. Morgan, The electronic structure and band gap of LiFePO4 and LiMnPO4, Solid State Communications 132(3-4) (2004) 181-186.
[9] L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough, Development and challenges of LiFePO 4 cathode material for lithium-ion batteries, Energy & Environmental Science 4(2) (2011) 269-284.
[10] C.-H. Chen, C.-J. Wang, B.-J. Hwang, Electrochemical performance of layered Li [NixCo1− 2xMnx] O2 cathode materials synthesized by a sol–gel method, Journal of Power Sources 146(1-2) (2005) 626-629.
[11] M. Gozu, K. Świerczek, J. Molenda, Structural and transport properties of layered Li1+ x (Mn1/3Co1/3Ni1/3) 1− xO2 oxides prepared by a soft chemistry method, Journal of Power Sources 194(1) (2009) 38-44.
[12] R. Rauh, S. Brummer, The effect of additives on lithium cycling in methyl acetate, Electrochimica Acta 22(1) (1977) 85-91.
[13] Y. Geronov, B. Puresheva, R. Moshtev, P. Zlatilova, T. Kosev, Z. Stoynov, G. Pistoia, M. Pasquali, Rechargeable Compact Li Cells with Li x Cr0. 9 V 0.1 S 2 and Li1+ x V 3 O 8 Cathodes and Ether‐Based Electrolytes, Journal of The Electrochemical Society 137(11) (1990) 3338-3344.
[14] R. Fong, U. Von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, Journal of The Electrochemical Society 137(7) (1990) 2009-2013.
[15] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical Reviews 104(10) (2004) 4303-4418.
[16] M. Ue, Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ‐butyrolactone, Journal of The Electrochemical Society 141(12) (1994) 3336-3342.
[17] C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries, Journal of The Electrochemical Society 152(12) (2005) A2327-A2334.
[18] E. Roth, D. Doughty, Thermal abuse performance of high-power 18650 Li-ion cells, Journal of Power Sources 128(2) (2004) 308-318.
[19] E.P. Roth, Abuse response of 18650 Li-ion cells with different cathodes using EC: EMC/LiPF6 and EC: PC: DMC/LiPF6 electrolytes, ECS Transactions 11(19) (2008) 19-41.
[20] D. MacNeil, D. Larcher, J. Dahn, Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature, Journal of The Electrochemical Society 146(10) (1999) 3596-3602.
[21] D. Belov, M.-H. Yang, Failure mechanism of Li-ion battery at overcharge conditions, Journal of Solid State Electrochemistry 12(7-8) (2008) 885-894.
[22] T. Yoshida, K. Kitoh, S. Ohtsubo, W. Shionoya, H. Katsukawa, J.-i. Yamaki, Safety performance of large and high-power lithium-ion batteries with manganese spinel and meso carbon fiber, Electrochemical and Solid-State Letters 10(3) (2007) A60-A64.
[23] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta 50(2-3) (2004) 247-254.
[24] D.-Y. Lee, H.-S. Lee, H.-S. Kim, H.-Y. Sun, D.-Y. Seung, Redox shuttle additives for chemical overcharge protection in lithium ion batteries, Korean Journal of Chemical Engineering 19(4) (2002) 645-652.
[25] S. Narayanan, S. Surampudi, A. Attia, C. Bankston, Analysis of Redox Additive‐Based Overcharge Protection for Rechargeable Lithium Batteries, Journal of The Electrochemical Society 138(8) (1991) 2224-2229.
[26] T.J. Richardson, P.N. Ross, Overcharge protection for rechargeable lithium polymer electrolyte batteries, Journal of The Electrochemical Society 143(12) (1996) 3992-3996.
[27] G.E. Blomgren, Liquid electrolytes for lithium and lithium-ion batteries, Journal of Power Sources 119 (2003) 326-329.
[28] H. Mao, D.S. Wainwright, Polymerizable additives for making non-aqueous rechargeable lithium batteries safe after overcharge, Google Patents, 2000.
[29] R.J. Waltman, A. Diaz, J. Bargon, Electroactive properties of polyaromatic molecules, Journal of The Electrochemical Society 131(4) (1984) 740-744.
[30] X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties, Journal of The Electrochemical Society 148(10) (2001) A1058-A1065.
[31] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate, Journal of The Electrochemical Society 149(8) (2002) A1079-A1082.
[32] K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes, Journal of The Electrochemical Society 149(5) (2002) A622-A626.
[33] M.S. Ding, K. Xu, T.R. Jow, Effects of tris (2, 2, 2-trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of LiPF6 in EC-PC-EMC of 3: 3: 4 weight ratios, Journal of The Electrochemical Society 149(11) (2002) A1489-A1498.
[34] X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The use of an amorphous carbon anode, Journal of The Electrochemical Society 148(10) (2001) A1066-A1071.
[35] A. Granzow, Flame retardation by phosphorus compounds, Accounts of Chemical Research 11(5) (1978) 177-183.
[36] T. Kashiwagi, J.W. Gilman, K.M. Butler, R.H. Harris, J.R. Shields, A. Asano, Flame retardant mechanism of silica gel/silica, Fire and Materials 24(6) (2000) 277-289.
[37] K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties, Journal of The Electrochemical Society 150(2) (2003) A161-A169.
[38] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: II. Performance in cell, Journal of The Electrochemical Society 150(2) (2003) A170-A175.
[39] Y. Ein‐Eli, S.F. McDevitt, D. Aurbach, B. Markovsky, A. Schechter, Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes, Journal of The Electrochemical Society 144(7) (1997) L180-L184.
[40] D. Aurbach, M.D. Levi, E. Levi, A. Schechter, Failure and stabilization mechanisms of graphite electrodes, The Journal of Physical Chemistry B 101(12) (1997) 2195-2206.
[41] N. Dupre, J.-F. Martin, J. Oliveri, P. Soudan, D. Guyomard, A. Yamada, R. Kanno, Aging of the LiNi1/2Mn1/2O2 Positive Electrode Interface in Electrolyte, Journal of The Electrochemical Society 156(5) (2009) C180-C185.
[42] A. Würsig, H. Buqa, M. Holzapfel, F. Krumeich, P. Novák, Film formation at positive electrodes in lithium-Ion batteries, Electrochemical and Solid-State Letters 8(1) (2005) A34-A37.
[43] P. He, X. Zhang, Y.-G. Wang, L. Cheng, Y.-Y. Xia, Lithium-ion intercalation behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions, Journal of The Electrochemical Society 155(2) (2008) A144-A150.
[44] Z. Wang, Y. Sun, L. Chen, X. Huang, Electrochemical Characterization of Positive Electrode Material LiNi1/3Co1/3Mn1/3O2 and Compatibility with Electrolyte for Lithium-Ion Batteries, Journal of The Electrochemical Society 151(6) (2004) A914-A921.
[45] Z. Wang, X. Huang, L. Chen, Characterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithium-ion batteries, Journal of The Electrochemical Society 151(10) (2004) A1641-A1652.
[46] P. Goonetilleke, J. Zheng, D. Roy, Effects of surface-film formation on the electrochemical characteristics of LiMn2O4 cathodes of lithium ion batteries, Journal of The Electrochemical Society 156(9) (2009) A709-A719.
[47] L. Yang, B. Ravdel, B.L. Lucht, Electrolyte reactions with the surface of high voltage LiNi0. 5Mn1. 5O4 cathodes for lithium-ion batteries, Electrochemical and Solid-State Letters 13(8) (2010) A95-A97.
[48] G. Li, H. Li, Y. Mo, L. Chen, X. Huang, Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS), Journal of Power Sources 104(2) (2002) 190-194.
[49] D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources 89(2) (2000) 206-218.
[50] Y.-C. Yen, S.-C. Chao, H.-C. Wu, N.-L. Wu, Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells, Journal of The Electrochemical Society 156(2) (2009) A95-A102.
[51] Z. Wang, L. Xing, J. Li, M. Xu, W. Li, Triethylborate as an electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery, Journal of Power Sources 307 (2016) 587-592.
[52] J. Chen, Y. Gao, C. Li, H. Zhang, J. Liu, Q. Zhang, Interface modification in high voltage spinel lithium-ion battery by using N-methylpyrrole as an electrolyte additive, Electrochimica Acta 178 (2015) 127-133.
[53] Y.-M. Song, C.-K. Kim, K.-E. Kim, S.Y. Hong, N.-S. Choi, Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0. 5Mn1. 5O4 cathodes, Journal of Power Sources 302 (2016) 22-30.
[54] H. Xiang, H. Xu, Z. Wang, C. Chen, Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes, Journal of Power Sources 173(1) (2007) 562-564.
[55] I.A. Mohammed, A. Mustapha, Synthesis of new azo compounds based on N-(4-hydroxypheneyl) maleimide and N-(4-methylpheneyl) maleimide, Molecules 15(10) (2010) 7498-7508.
[56] 湯仁忠, 聚醯亞胺複合材料及含磷雙馬來醯亞胺耐燃材料之製備與性質探討, 中原大學化學研究所學位論文 (2006) 1-200.
[57] 張育豪, 改善鋰離子電池電性之新穎電解液添加劑, 國立中央大學化學學系碩士論文 (2016).
指導教授 諸柏仁 審核日期 2018-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明