博碩士論文 105223024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.119.28.110
姓名 謝昌樺(Chang-Hua Hsieh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含BF2-chelated結構及同雜環分子之液晶性質探討
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在系列一中成功合成出以substituted tetraketonates 1-5為配位基,與boron difluoride (BF2) 形成錯合物1-BF25-BF2,其中化合物1-BF2與2-BF2並無液晶相產生,而化合物3-BF25-BF2 (n = 10, 12, 14) 因達適合的軟端硬核比例,經由偏光紋理圖與powder X-ray diffraction實驗結果判定為Colh盤狀液晶。化合物1-5, 1-BF25-BF2 ( n = 12) 以UV可見光光譜、螢光光譜及固態螢光光譜探討該分子的光學性質,從結果可得知增加推電子的烷氧基數目與從tetraketonates形成含雙BF2錯合物時皆使得最大放光波長紅移。化合物3-BF25-BF2為目前少見含雙BF2結構之盤狀液晶,且為室溫液晶。
在系列二中成功合成出以苯環為中心硬核且含有兩個pyrazole及isoxazole 之對稱同雜環衍生化合物1a-6b,本實驗藉由引入雜環系統、改變分子軟硬端比、改變位相、引入氫氧基來觀察以上因素對化合物液晶行為的影響。經由偏光紋理圖與powder X-ray diffraction實驗結果能判定含有pyrazole的化合物2a、3a及含有isoxazole的化合物4b、5b皆有Colh盤狀液晶的出現,且在4b (n = 10, 12) 只有單向型液晶發現。而含有氫氧基6a則有SmX相發現。最後置入氫氧基的6a、6b的OH的氫鍵使分子間作用力增加,使其澄清點溫度較沒置入氫氧基1a、1b的高。化合物1a-6a ( n = 12) 以UV可見光光譜、螢光光譜譜探討該分子的光學性質,可以發現擁有最長共軛的5a其吸收吸收波長最紅位移,而置入氫氧基的6a螢光波長較1a藍位移。
在系列三中成功合成出以苯環為中心硬核且含有三個pyrazole及isoxazole 之同雜環衍生化合物7a、7b,可以發現含有pyrazole的化合物7a有較強的分子間氫鍵作用力因此澄清點較7b高。而在7a中可以觀察到黏滯性大、流動性差的SmX相;搭配變溫IR,藉由升降溫peak變化,可發現從固態到液態分子間氫鍵作用力變化。
摘要(英) Complexes or adducts containing boron difluoride (BF2) have been paid much attention during the past years. Many known boron difluoride complexes, widely investigated as fluorescent materials showed potential applications in many areas; such as biological imaging, molecular probes, electroluminescent devices, photosensitizers and others. However, only a few examples were reported among mesogenic applications.
In the first part, five new series of bis(boron difluoride) complexes 1-BF25-BF2 derived from substituted tetraketonates 1-5 were reported, and their mesomorphic and optical properties were also investigated. Results appeared that bis(BF2) complexes 1-BF2、2-BF2 were nonmesogenic and 3-BF25-BF2 (n = 10, 12, 14) exhibited enantiotropic columnar mesophases. A value of Ncell = 3.143.76 within a column slice of 9.0 Å thick was obtained for compound 3-BF25-BF2, indicating that a single discshaped molecule was stacked within columns in Colh phases. Bis(BF2) complexes 1-BF25-BF2 (n = 12) possess a pronounced greenyellow emission in solution at room temperature and possess a pronounced orangered emission in solid at room temperature. The luminescent emission also showed a strong dependence with structural moiety incorporated. To our best knowledge, there are rare examples of columnar bis(BF2) complexes.
Nowadays more and more liquid-crystalline compounds containing five-membered heterocycles are the subject of much investigation. These heterocyclic structures generally incorporated of such electronegative atoms (S, O or N atom) often resulted in a reduced or lowering symmetry for the overall molecules or/and a stronger polar induction. Quite a few examples, including pyrazoles, isoxazole, 1,3,4-oxaziazoles, and others have been prepared and investigated in our group. Most of them formed smectic phases whereas, only a few of them exhibited columnar phases.
In the second series, a system of twin mesogens containing pyrazoles and isoxazoles was synthesized and characterized by 1H NMR, 13C NMR, Mass spectrometry and Elementary anaylysis. In this experiment, the effect of the above factors on the liquid crystal behavior of the compound was observed by introducing a heterocyclic system, changing the ratio of the hard and soft terminals, changing the patern, and introducing a hydroxyl group. The results of POM and powder X-ray diffraction experiments indicate that compounds 2a, 3a, 4b and 5b show the Colh liquid crystals.And the presence of hydroxyl 6a has SmX phase found.In UV absorption spectra, the reddish shift of 5a is due to its longest conjugation length
In the third series,the heterocyclic derivative 7a, 7b with a benzene ring as the central hard core and three pyrazole and isoxazole compounds were successfully synthesized, and 7a clean point is higher than 7b, because 7a has strong intermolecular hydrogen bonding force.In the 7a, the SmX phase can be observed. With the variable temperature IR, the change of the hydrogen bonding force from the solid state to the liquid state can be found by the change of the peak.
關鍵字(中) ★ 液晶 關鍵字(英) ★ liquid crystal
論文目次 中文摘要 i
Abstract ii
謝誌 iv
第一章 緒論 1
1-1 液晶簡介與應用性 2
1-2 液晶分子的基礎架構 6
1-3 液晶作用力 8
1-4 液晶形成方式分類 11
1-4-1 向列型液晶 13
1-4-2 層列型液晶 14
1-4-3 盤狀液晶 15
1-5 Boron difluoride complex簡介 16
1-6 五圓雜環簡介 18
1-7 研究動機 20
1-7-1 系列一研究動機 21
1-7-2 系列二研究動機 22
1-7-3 系列三研究動機 24
第二章 實驗部分 25
2-1 實驗藥品 26
2-2 儀器設備 28
2-3 實驗流程 32
2-3-1系列一之實驗流程 32
2-3-2系列二之實驗流程 33
2-3-3系列三之實驗流程 34
2-4實驗步驟 35
2-4-1系列一之合成 35
2-4-2系列二之合成 51
2-4-3系列三之合成 64
第三章 結果與討論 68
3-1 系列一化合物之探討 69
3-1-1系列一之結構與代號 69
3-1-2系列一化合物1H NMR探討 70
3-1-3系列一化合物之偏光紋理圖(POM) 73
3-1-4系列一化合物之熱微差掃描分析儀(DSC) 74
3-1-5系列一化合物之熱重分析 (TGA) 79
3-1-6 化合物 3-BF2、4-BF2與5-BF2 之 Powder X-ray分析與分子模擬排列 80
3-1-7系列一化合物之光學性質探討 89
3-2 系列二化合物性質探討 93
3-2-1系列二之結構與代號 93
3-2-2系列二化合物之偏光紋理圖 (POM) 94
3-2-3系列二化合物之熱微差掃描分析儀 (DSC) 97
3-2-4系列二化合物之熱重分析(TGA) 105
3-2-5系列二化合物2a、3a、4b與5b之 Powder X-ray 分析與分子模擬排列 107
3-2-6系列二化合物1-6a光學性質探討 114
3-2-7系列二化合物1-6a變溫IR圖譜 117
3-3 系列三化合物之探討 123
3-3-1系列三之結構與代號 123
3-3-2系列三化合物之偏光紋理圖 (POM) 124
3-3-3系列三化合物之熱微差掃描分析儀 (DSC) 125
3-3-4系列三化合物之熱重分析 (TGA) 127
3-3-5系列三化合物7a變溫IR圖譜 129
第四章 結論 130
4-1 系列一結論 131
4-2 系列二結論 132
4-3 系列三結論 133
參考文獻 134
附圖 143
參考文獻 1. A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15, 1423–1463.
2. A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15, 2897–2920.
3. A. Sysak and B. Obmińska-Mrukowicz, Eur. J. Med. Chem..
DOI: 10.1016/j.ejmech.2017.06.002.
4. A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, V. V. Pakalnis and N. V. Rostovskii, Russ. Chem. Rev., 2015, 84, 335–377.
5. S. Ponra and K. C. Majumdar, RSC Adv., 2016, 6, 37784–37922.
6. J. T. Yu and C. Pan, Chem. Commun., 2016, 52, 2220–2236.
7. C. Qian, M. Liu, G. Hong, P. Xue, P. Gong and R. Lu, Org. Biomol. Chem., 2015, 13, 2986–2998.
8. M. Santra, H. Moon, M. H. Park, T. W. Lee, Y. K. Kim and K. H. Ahn, Chem. Eur. J., 2012, 18, 9886–9893.
9. X. Li and Y. A. Son, Dyes Pigm., 2014, 107, 182–187.
10. J. Massue, D. Frath, G. Ulrich, P. Retailleau and R. Ziessel, Org. Lett., 2012, 14, 230–233.
11. G. Zhang, G. M. Palmer, M. W. Dewhirst and C. L. Fraser., Nat. Mater., 2009, 8, 747–751.
12. S. Giordani, J. Bartelmess, M. Frasconi, I. Biondi, S. Cheung, M. Grossi, D. Wu, L. Echegoyen and D. F. O′Shea, J. Mater. Chem. B, 2014, 2, 7459–7463.
13. J. S. Lee, N. Y. Kang, Y. K. Kim, A. Samanta, S. Feng, H. K. Kim, M. Vendrell, J. H. Park and Y. T. Chang, J. Am. Chem. Soc., 2009, 131, 10077–10082.
14. A. Ojida, T. Sakamoto, M. A. Inoue, S. H. Fujishima, G. Lippens and I. Hamachi, J. Am. Chem. Soc., 2009, 131, 6543–6548.
15. T. Kowada, H. Maeda and K. Kikuchi, Chem. Soc. Rev., 2015, 44, 4953–4972.
16. M. Chapran, E. Angioni, N. J. Findlay, B. Breig, V. Cherpak, P. Stakhira, T. Tuttle, D. Volyniuk, J. V. Grazulevicius, Y. A. Nastishin, O. D. Lavrentovich and P. J. Skabara, ACS Appl. Mater. Interfaces, 2017, 9, 4750−4757.
17. Q. Tang, W. Si, C. Huang, K. Ding, W. Huang, P. Chen, Q. Zhang and X. Dong, J. Mater. Chem. B, 2017, 5, 1566–1573.
18. D. O. Frimannsson, M. Grossi, J. Murtagh, F. Paradisi and D. F. O’Shea, J. Med. Chem., 2010, 53, 7337–7343.
19. A. D’Aléo and F. Fages, Photochem. Photobiol. Sci., 2013, 12, 500–510.
20. M. Mamiya, Y. Suwa, H. Okamoto and M. Yamaji, Photochem. Photobiol. Sci., 2016, 15, 928–936.
21. D. J. Wang, B. P. Xu, X. H. Wei and J. Zheng, J. Fluorine Chem., 2012, 140, 49–53.
22. K. Ono, K. Yoshikawa, Y. Tsuji, H. Yamaguchi, R. Uozumi, M. Tomura, K. Taga and K. Saito, Tetrahedron, 2007, 63, 9354–9358.
23. R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Macromol. Rapid Commun., 2014, 35, 1315−1319.
24. R. S. Singh, M. Yadav, R. K. Gupta, R. Pandey and D. S. Pandey, Dalton Trans., 2013, 42, 1696–1707.
25. M. J. Kwak and Y. Kim, Bull. Korean Chem. Soc., 2009, 30, 2865–2866.
26. K. Benelhadj, J. Massue and G. Ulrich, New J. Chem., 2016, 40, 5877–5884.
27. Q. Liu, X. Wang, H. Yan, Y. Wu, Z. Li, S. Gong, P. Liu and Z. Liu, J. Mater. Chem. C, 2015, 3, 2953–2959.
28. T. M. H. Vuong, J. Weimmerskirch-Aubatin, J. F. Lohier, N. Bar, S. Boudin, C. Labbé, F. Gourbilleau, H. Nguyen, T. T. Dang and Didier Villemin, New J. Chem., 2016, 40, 6070–6076.
29. Y. Meesala, V. Kavala, H. C. Chang, T. S. Kuo, C. F. Yao and W. Z. Lee, Dalton Trans., 2015, 44, 1120–1129.
30. W. Li, W. Lin, J. Wang and X. Guan, Org. Lett., 2013, 15, 1768–1771.
31. X. Zhang, H. Yu and Y. Xiao, J. Org. Chem., 2012, 77, 669−673.
32. S. M. Barbon, J. T. Price, P. A. Reinkeluers and J. B. Gilroy, Inorg. Chem., 2014, 53, 10585−10593.
33. H. M. Ko, J. Korean Chem. Soc., 2016, 60, 21−27.
34. A. D′Aléo, A. Felouat, V. Heresanu, A. Ranguis, D. Chaudanson, A. Karapetyan, M. Giorgi and F. Fages, J. Mater. Chem. C, 2014, 2, 5208–5215.
35. E. Cogné-Laage, J. F. Allemand, O. Ruel, J. B. Baudin, V. Croquette, M. Blanchard-Desce, and Ludovic Jullien, Chem. Eur. J., 2004, 10, 1445–1455.
36. L. A. Padilha, S. Webster, O. V. Przhonska, H. Hu, D. Peceli, T. R. Ensley, M. V. Bondar, A. O. Gerasov, Y. P. Kovtun, M. P. Shandura, A. D. Kachkovski, D. J. Hagan and E. W. Van Stryland, J. Phys. Chem. A, 2010, 114, 6493–6501.
37. C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova and A. Moore, J. Am. Chem. Soc., 2009, 131, 15257–15261.
38. M. J. Mayoral, P. Ovejero, M. Cano and G. Orellana, Dalton Trans., 2011, 40, 377–383.
39. A. Sakai, M. Tanaka, E. Ohta, Y. Yoshimoto, K. Mizuno and H. Ikeda, Tetrahedron Lett., 2012, 53, 4138–4141.
40. G. Zhang, J. Chen, S. J. Payne, S. E. Kooi, J. N. Demas and C. L. Fraser, J. Am. Chem. Soc., 2007, 129, 8942–8943.
41. Y. Sun, D. Rohde, Y. Liu, L. Wan, Y. Wang, W. Wu, C. Di, G. Yu and D. Zhu, J. Mater. Chem., 2006, 16, 4499–4503.
42. C. A. DeRosa, J. Samonina-Kosicka, Z. Fan, H. C. Hendargo, D. H. Weitzel, G. M. Palmer and C. L. Fraser, Macromolecules, 2015, 48, 2967−2977.
43. R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Chem. Eur. J., 2013, 19, 4506–4512.
44. R. Tan, Q. Lin, Y. Wen, S. Xiao, S. Wang, R. Zhang and T. Yi, CrystEngComm, 2015, 17, 66746680.
45. A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891−4932.
46. N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 2012, 41, 1130–1172.
47. J. Bañuelos, F. L. Arbeloa, T. Arbeloa, V. Martinez and I. L. Arbeloa, Applied Science Innovations Pvt. Ltd. 2012.
48. J.-H. Olivier, F. Camerel, G. Ulrich, J. Barberá and R. Ziessel, Chem. Eur. J., 2010, 16, 7134–7142.
49. F. Camerel, L. Bonardi, G. Ulrich, L. Charbonnière, B. Donnio, C. Bourgogne, D. Guillon, P. Retailleau and R. Ziessel, Chem. Mater., 2006, 18, 5009–5021.
50. F. Camerel, L. Bonardi, M. Schmutz and R. Ziessel, J. Am. Chem. Soc., 2006, 128, 4548–4549.
51. S. M. Barbon, V. N. Staroverov, P. D. Boyle and J. B. Gilroy, Dalton Trans., 2014, 43, 240–250.
52. M. C. Chang, A. Chantzis, D. Jacquemin and E. Otten, Dalton Trans., 2016, 45, 9477–9484.
53. S. M. Barbon, J. T. Price, U. Yogarajah and J. B. Gilroy, RSC Adv., 2015, 5, 56316–56324.
54. M. C. Chang and E. Otten, Chem. Commun., 2014, 50, 7431–7433.
55. S. M. Barbon, V. N. Staroverov and J. B. Gilroy, J. Org. Chem., 2015, 80, 5226−5235.
56. A. Kamal, A. B. Shaik, B. B. Rao, I. Khan, G. B. Kumara and N. Jain, Org. Biomol. Chem., 2015, 13, 10162–10178.
57. H. Chuang, L. C. S. Huang, M. Kapoor, Y. J. Liao, C. L. Yang, C. C. Chang, C. Y. Wu, J. R. Hwu, T. J. Huang and M. H. Hsu, Med. Chem. Commun., 2016, 7, 832–836.
58. L. Yan, J. Wu, H. Chen, S. Zhang, Z. Wang, H. Wang and F. Wu, RSC Adv., 2015, 5, 73660–73669.
59. T. S. Kamatchi, P. Kalaivani, F. R. Fronczek, K. Natarajan and R. Prabhakaran, RSC Adv., 2016, 6, 46531–46547.
60. H. Andleeb, Y. Tehseen, S. J. A. Shah, I. Khan, J. Iqbal and S. Hameed, RSC Adv., 2016, 6, 77688–77700.
61. B. A. Chalyk, I. Y. Kandaurova, K. V. Hrebeniuk,
O. V. Manoilenko, I. B. Kulik, R. T. Iminov, V. Kubyshkin, A. V. Tverdokhlebov, O. K. Ablialimov and P. K. Mykhailiuk, RSC Adv., 2016, 6, 25713–2572.
62. J. Fernández, J. Chicharro, J. M. Bueno and M. Lorenzo, Chem. Commun., 2016, 52, 10190–10192.
63. I. Triandafillidi and C. G. Kokotos, Org. Lett., 2017, 19, 106–109.
64. H. Yu, P. Ge, J. Chen, H. Xie and Yi Luo,
Environ. Sci.: Processes Impacts, 2017, 19, 379–387.
65. K. T. Lin, G. H. Lee and C. K. Lai, Tetrahedron, 2015, 71, 4352–4361.
66. H. H. G. Tsai, L. C. Chou, S. C. Lin, H. S. Sheu and C. K. Lai, Tetrahedron Lett., 2009, 50, 1906–1910.
67. K. T. Lin and C. K. Lai, Tetrahedron, 2016, 72, 7579–7588.
68. K. T. Lin, H. M. Kuo, H. S. Sheu and C. K. Lai, Tetrahedron, 2014, 70, 6457–6466.
69. S. Y. Chou, C. J. Chen, S. L. Tsai, H. S. Sheu,G. H. Lee and C. K. Lai, Tetrahedron, 2009, 65, 1130–1139.
70. M. C. Chen, S. C. Lee, C. C. Ho, T. S. Hu, G. H. Lee and C. K. Lai, Tetrahedron, 2009, 65, 9460–9467.
71. T. Ikeda, T. Iijima, R. Sekiya, O. Takahashi and T. Haino, J. Org. Chem., 2016, 81, 6832–6837.
72. R. J. Fox, C. E. Markwalter, M. Lawler, K. Zhu, J. Albrecht, J. Payack and M. D. Eastgate. Org. Process Res. Dev., 2017, 21, 754–762.
73. D. Nagaraju, E. Rajanarendar, P. P. Kumar and M. N. Reddy, New J. Chem. DOI: 10.1039/c7nj01165b.
74. Q. Jin, J. Li, L. Zhang, S. Fanga and M. Liu, CrystEngComm, 2015, 17, 8058–8063.
75. C. T. Liao, Y. J. Wang, C. S. Huang, H. S. Sheu, G. H. Lee and C. K. Lai, Tetrahedron, 2007, 63, 12437–12445.
76. T. S. Hu, K. T. Lin, C. C. Mu, H. M. Kuo, M. C. Chen and C. K. Lai, Tetrahedron, 2014, 70, 9204–9213.
77. A. C. Götzinger, F. A. Theßeling, C. Hoppe and T. J. J. Müller, J. Org. Chem., 2016, 81, 10328–10338.
78. C. Cuerva, J. A. Campo, M. Cano, J. Sanz, I. Sobrados, V. Diez-Gómez, A. Rivera-Calzada and R. Schmidt, Inorg. Chem., 2016, 55, 6995–7002.
79. B. W. Cong, Z. H. Su, Z. F. Zhao, B. Y. Yu, W. Q. Zhao and X. J. Ma, Dalton Trans. DOI: 10.1039/c7dt01240c.
80. J. Li, G. Dong, L. Duan, D. Ma, T. Hu, Y. Zhang, L. Wang and Y. Qiu, RSC Adv., 2014, 4, 51294–51297.
81. C. M. Che, C. F. Chow, M. Y. Yuen, V. A. L. Roy, W. Lu, Y. Chen, S. S. Y. Chui and N. Zhu, Chem. Sci., 2011, 2, 216–220.
82. J. L. Liao, Y. Chi, J. Y. Wang, Z. N. Chen, Z. H. Tsai, W. Y. Hung, M. R. Tseng, and G. H. Lee, Inorg. Chem., 2016, 55, 6394–6404.
83. J. H. Yum, T. Moehl, J. Yoon, A. K. Chandiran, F. Kessler, P. Gratia, and M. Grätzel, J. Phys. Chem. C, 2014, 118, 16799–16805.
84. H. Kusama, H. Sugihara, and K. Sayama, J. Phys. Chem. C, 2009, 113, 48.
85. K. L. Wu, A. J. Huckaba, J. N. Clifford, Y. W. Yang, A. Yella, E. Palomares, M. Grätzel, Y. Chi and M. K. Nazeeruddin, Inorg. Chem., 2016, 55, 7388–7395.
86. F. Strinitz, J. Tucher, J. A. Januszewski, A. R. Waterloo, P. Stegner, S. Förtsch, E. Hübner, R. R. Tykwinski and N. Burzlaff, Organometallics, 2014, 33, 5129–5144.
87. H. M. Kuo, S. Y. Li, H. S. Sheu and C. K. Lai, Tetrahedron, 2012, 68, 7331–7337.
88. K. T. Lin, H. M. Kuo, H. S. Sheu and C. K. Lai, Tetrahedron, 2013, 69, 9045–9055.
89. H. M. Kuo, Y. L. Chen, G. H. Lee and C. K. Lai, Tetrahedron, 2016, 72, 6843–6853.
90. C. K. Lai, Y. C. Ke, J. C. Su, C. Shen and W. R. Li, Liq. Cryst., 2002, 29, 915–920.
91. C. Cuerva, J. A. Campo, P. Ovejero, M. R. Torresb and M. Cano, Dalton Trans., 2014, 43, 8849–8860.
92. C. Cuerva, J. A. Campo, P. Ovejero, M. R. Torres, E. Oliveira, S. M. Santos, C. L. and M. Cano, J. Mater. Chem. C, 2014, 2, 9167–9181.
93. W. C. Shen, Y. J. Wang, K. L. Cheng, G. H. Lee and C. K. Lai, Tetrahedron, 2006, 62, 8035–8044.
94. S. Kuwata and T. Ikariya, Chem. Commun., 2014, 50, 14290–14300.
95. T. Toda, K. Saitoh, A. Yoshinari, T. Ikariya and S. Kuwata, Organometallics, 2017, 36, 1188–1195.
96. W. Ye, X. Xiao, L. Wang, S. Hou and C. Hu, Organometallics.
DOI: 10.1021/acs.organomet.7b00154.
97. S. Kalaivani and T. Narasimhaswamy, J. Phys. Chem. B, 2011, 115, 11554–11565.
98. M. Roohnikan, V. Toader, A. Rey and L. Reven, Langmuir, 2016, 32, 8442–8450.
99. Y. Cai, M. Zheng, Y. Zhu, X. F. Chen, and C. Y. Li, ACS Macro Lett., 2017, 6, 479–484.
100. H. Y. Lin, H. M. Kuo, S. G. Wen, H. S. Sheu, G. H. Lee and C. K. Lai, Tetrahedron, 2012, 68, 6231–6239.
101. M. Denißen,J. Nordmann, J. Dziambor, B. Mayer, W. Frankb
and Thomas J. J. Muller.
102. http://webbook.nist.gov/cgi/cbook.cgi?ID=C288131&Units=SI&Mask=400#UV-Vis-Spec
103. http://webbook.nist.gov/cgi/cbook.cgi?ID=C288142&Units=SI&Mask=400#UV-Vis-Spec
104. 林慧芸, 碩士論文,中央大學化學研究所,民國九十六年.
105. 羅國維, 碩士論文,中央大學化學研究所,民國一百零五年.
106. 陳雅雯, 碩士論文,中央大學化學研究所,民國一百零五年.
107. Ya-Wen Chen, Yen-Chun Lin, Hsiu-Ming Kuoa and Chung K. Lai, J. Mater. Chem. C, 2017,5, 5465-5477
指導教授 賴重光(Chung-Kuang Lai) 審核日期 2018-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明