博碩士論文 105324063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.118.162.8
姓名 吳昶諭(Chang-Yu Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
(Effect of Metal-Organic Framework Crystal Morphology and Defect in Resulting Mixed Matrix Membrane)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 鋯金屬有機框架結構之二氧化碳吸附性質探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構與石墨烯薄膜之氣體輸送 機制模擬探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 文獻中,制膜溶劑、填料的形貌以及填料的特定氣體吸附能力皆是影響有機無機複合薄膜的氣體滲透效果的因素。因此,此研究高長寬比形貌以及高CO2吸附能力的ZIF-78被成功利用溶劑熱法製備。藉由使用不同製膜溶劑,系統性的製備無缺陷(No crystal cracking system)與缺陷(Crystal cracking system)的ZIF-78/PSF複合薄膜,而經由氣體滲透等一系列實驗檢測發現,ZIF-78複合薄膜擁有微孔性、高熱穩定性、膜的緻密性、以及優異的氣體滲透效能。
滲透時,N2分子在路徑選擇上,傾向選擇具有較低阻力的自由體積 (填料與高分子間或是填料與填料間) 而不是透過ZIF-78的孔洞,對N2來說可以視為沒有缺陷的ZIF-78晶體與高分子鏈段形成曲折的通透路徑。相反地, ZIF-78具有硝基 (-NO2) 官能基具有較好的CO2親和力,對於CO2分子來說,較願意選擇ZIF-78 孔洞為其滲透的路徑。上述原因使無缺陷ZIF-78/PSF複合薄膜具有優異的二氧化碳對N2的選擇比。另一方面,缺陷的複合薄膜中氣體滲透的機制大多與無缺陷的複合薄膜相同,但是由於晶體裂縫而導致薄膜中自由體積 (Free volume) 的提升,自由體積的提升使在N2的通透量對比於無缺陷系統時有顯著的提升效果,同時也是造成CO2對N2的選擇比下降的原因。與過去著名的氣體分離文獻標準(Robeson upper bound in 2008) 相比,ZIF-78/PSF的複合薄膜氣體效能逼近於文獻標準。 總結來說,此研究結果顯示,在ZIF-78/PSF的複合薄膜中CO2與N2具有不同的滲透路徑。我們認為,其它高長寬比形貌或是高吸附能力選擇比的材料所製成的複合薄膜也可以套用此滲透機制,將對薄膜氣體分離領域做出些許的貢獻。
摘要(英) According to literature, factors that enhance gas separation performance in MMMs include filler morphology and aspect ratio. In this work, high aspect ratio morphology and microporous ZIF-78 which have strong dipole-quadrupole interaction with carbon dioxide was successfully synthesized using a solvothermal method. ZIF-78 particles were incorporated into polymer solutions to form non-defective and systematically defective ZIF-78 filler MMMs by using two common solvents – chloroform and DMF. Characterization of the MMMs by XRD, TGA, SEM and gas transport experiments showed that MMMs had thermally stable, microporous, dense membrane phase and great gas separation performance.
For nitrogen permeation, the introduction of high aspect ratio ZIF-78 crystals with no apparent defect (no cracking system) result in longer and more tortuous pathway. Conversely, for carbon dioxide, strong dipole-quadrupole interaction with ZIF-78 create excellent permeation pathway through the crystal. The defective ZIF-78 based MMMs created more inter-filler free volume which allowed the gases more chance to permeate, in addition to the original mechanism found in the no cracking system. The gas separation performance of the resulting MMMs (139% improvement of CO2 permeability and 144% improvement of CO2/N2 ideal selectivity) in this work approach the 2008 Robeson upper bound. Consequently, results showed that CO2 and N2 went through different paths during permeability test in mixed matrix membrane. We suggested that incorporating high aspect ratio particle morphology and high selectivity of gases uptake ability materials in polymer would cause special pathway to separate gases.
關鍵字(中) ★ 類沸石咪唑框架配位材料(ZIF-78)
★ 有機無機複合薄膜
★ 自由體積
★ 氣體滲透測試
★ 晶體形貌控制
★ 系統性缺陷晶體
關鍵字(英) ★ Zeolitic imidazolate framework
★ Mixed Matrix Membrane
★ Free volume
★ Gas separation performance
★ Crystal morphology control
★ Defective crystal
論文目次 摘要 I
Abstract II
Acknowledgment IV
List of Figures VII
List of Tables X
Chaper 1 Background 1
1-1 Introduction 1
1-2 Review of Relevant Literature 3
1-3 Motivation 8
Chapter 2 Experimetal 9
2-1 Materials and Reagents 9
2-2 Instruments 9
2-3 Instrument Analysis and Identification 10
2-3-1 Scanning Electron Microscopy (SEM, JEOL, JSM-7600F) 10
2-3-2 Energy-Dispersive X-ray Spectroscopy (EDS, Oxford Instruments, Xmax 80) 10
2-3-3 X-ray Diffraction (XRD, BRUKER, D8AXRD) 11
2-3-4 Thermogravimetric Analysis(TGA) 12
2-3-5 Differential Scanning Calorimetry (DSC, PerkinElmer PYRIS Diamond) 12
2-3-6 Micropore Size and Surface Area Analysis (BET, Micromeritics ASAP 2020 Sorptometer) 13
2-4 Experiment Step 15
2-4-1 ZIF-78 Particles Synthesis 15
2-4-2 Pure Membranes and ZIF-78/PSF MMMs fabrication 17
2-4-3 Application of Single Gas Permeation Test for Membranes 18
Chapter 3 Results and discussion 23
3-1 Characteristics of ZIF-78 Particles 23
3-1-1 Surface Area and Gas Uptake Ability of ZIF-78 23
3-1-2 Morphology of ZIF-78 24
3-1-3 X-ray Diffraction of ZIF-78 26
3-1-4 Thermogravimetric Analysis of ZIF-78 27
3-2 Characteristics of ZIF-78/PSF Mixed Matrix Membrane 28
3-2-1 ZIF-78 Crystal Cracking in Mixed Matrix Membrane 28
3-2-2 Gas Uptake Ability of ZIF-78/PSF MMMs 30
3-2-3 Morphology and Elemental Distribution of ZIF-78/PSF MMMs 31
3-2-3 Glass Transition Temperature of ZIF-78/PSF MMMs 35
3-2-4 Thermogravimetric Analysis of ZIF-78/PSF MMMs 37
3-3 Gas Separation Performance for ZIF-78/PSF MMMs 39
Chapter 4 Conclusions 48
Chapter 5 Future work 49
Reference 50
參考文獻 [1] W.B. Li, Y.F. Zhang, Q.B.A. Li, G.L. Zhang, Metal-organic framework composite membranes: Synthesis and separation applications, Chem Eng Sci, 135 (2015) 232-257.
[2] M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A.A. Alomair, A. Perez, M.S. Rana, Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review, Separation and Purification Technology, 188 (2017) 431-450.
[3] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400.
[4] A.F. Ismail, P.Y. Lai, Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation, Separation and Purification Technology, 33 (2003) 127-143.
[5] I.G.W. Helen Julian, Polysulfone membranes for CO2:CH4 separation: State of the art, IOSR Journal of Engineering (2012) 484-495.
[6] A.L. Ahmad, J.K. Adewole, C.P. Leo, A.S. Sultan, S. Ismail, Preparation and gas transport properties of dual-layer polysulfone membranes for high pressure CO2removal from natural gas, Journal of Applied Polymer Science, 131 (2014) n/a-n/a.
[7] J.K. Adewole, A.L. Ahmad, S. Ismail, C.P. Leo, A.S. Sultan, Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4separation, Journal of Applied Polymer Science, 132 (2015).
[8] L.M. Robeson, Correlation of Separation Factor Versus Permeability for Polymeric Membranes, Journal of Membrane Science, 62 (1991) 165-185.
[9] H.B. Tanh Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Trans, 41 (2012) 14003-14027.
[10] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O′Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc Chem Res, 43 (2010) 58-67.
[11] R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O′Keeffe, O.M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, J Am Chem Soc, 131 (2009) 3875-3877.
[12] J. Yao, H. Wang, Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications, Chem Soc Rev, 43 (2014) 4470-4493.
[13] B. Seoane, J. Coronas, I. Gascon, M. Etxeberria Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?, Chem Soc Rev, 44 (2015) 2421-2454.
[14] J.P. Boom, Transport through zeolite ?lled polymeric membranes., in, University of Twente, The Netherlands, 1994.
[15] D.Q. Vu, W.J. Koros, S.J. Miller, T.-S. Chung, Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results, Journal of Membrane Science, 211 (2002) 311-334.
[16] Y.S. Li, F.Y. Liang, H.G. Bux, W.S. Yang, J. Caro, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, Journal of Membrane Science, 354 (2010) 48-54.
[17] M.J.C. Ordonez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, Molecular sieving realized with ZIF-8/MatrimidR mixed-matrix membranes, Journal of Membrane Science, 361 (2010) 28-37.
[18] T.T. Moore, W.J. Koros, Non-ideal effects in organic–inorganic materials for gas separation membranes, Journal of Molecular Structure, 739 (2005) 87-98.
[19] R. Adams, C. Carson, J. Ward, R. Tannenbaum, W. Koros, Metal organic framework mixed matrix membranes for gas separations, Microporous and Mesoporous Materials, 131 (2010) 13-20.
[20] T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science, 296 (2002) 519-522.
[21] J.E. Bachman, Z.P. Smith, T. Li, T. Xu, J.R. Long, Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals, Nat Mater, 15 (2016) 845-849.
[22] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, I.X.F.X. Llabres, J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation, Nat Mater, 14 (2015) 48-55.
[23] J.A. Sheffel, M. Tsapatsis, A model for the performance of microporous mixed matrix membranes with oriented selective flakes, Journal of Membrane Science, 295 (2007) 50-70.
[24] S. Choi, J. Coronas, E. Jordan, W. Oh, S. Nair, F. Onorato, D.F. Shantz, M. Tsapatsis, Layered silicates by swelling of AMH-3 and nanocomposite membranes, Angew Chem Int Ed Engl, 47 (2008) 552-555.
[25] K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science, 334 (2011) 72-75.
[26] J.K. Adewole, A.L. Ahmad, S. Ismail, C.P. Leo, A.S. Sultan, Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation, Journal of Applied Polymer Science, 132 (2015) 42205.
[27] Y.H. Deng, J.T. Chen, C.H. Chang, K.S. Liao, K.L. Tung, W.E. Price, Y. Yamauchi, K.C. Wu, A Drying-Free, Water-Based Process for Fabricating Mixed-Matrix Membranes with Outstanding Pervaporation Performance, Angew Chem Int Ed Engl, 55 (2016) 12793-12796.
[28] X.L. Dong, K. Huang, S.N. Liu, R.F. Ren, W.Q. Jin, Y.S. Lin, Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination, Journal of Materials Chemistry, 22 (2012) 19222-19227.
[29] T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 32 (2007) 483-507.
[30] M. Moaddeb, W.J. Koros, Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles, Journal of Membrane Science, 125 (1997) 143-163.
[31] M. Mahdyarfar, T. Mohammadi, A. Mohajeri, Defect formation and prevention during the preparation of supported carbon membranes, New Carbon Materials, 28 (2013) 369-377.
[32] F. Dorosti, M. Omidkhah, R. Abedini, Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation, Chemical Engineering Research & Design, 92 (2014) 2439-2448.
[33] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60 (1938) 309-319.
[34] J.G. M.P. Gomez-Tena, J. Toledo,E. Zumaquero, C. Machi, RELATIONSHIP BETWEEN THE SPECIFIC SURFACE AREA PARAMETERS DETERMINED USING DIFFERENT ANALYTICAL TECHNIQUES, (2013).
[35] Y. Ban, Y. Li, X. Liu, Y. Peng, W. Yang, Solvothermal synthesis of mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology, Microporous and Mesoporous Materials, 173 (2013) 29-36.
[36] M. Valero, B. Zornoza, C. Tellez, J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers, Microporous and Mesoporous Materials, 192 (2014) 23-28.
[37] M. Lomax, Permeation of gases and vapours through polymer films and thin sheet—part I, Polymer Testing, 1 (1980) 105-147.
[38] W. Liang, C.J. Coghlan, F. Ragon, M. Rubio-Martinez, D.M. D′Alessandro, R. Babarao, Defect engineering of UiO-66 for CO2 and H2O uptake - a combined experimental and simulation study, Dalton Trans, 45 (2016) 4496-4500.
[39] L.Z. Xia, F.L. Wang, Prediction of hydrogen storage properties of Zr-based MOFs, Inorganica Chimica Acta, 444 (2016) 186-192.
[40] L.Z. Xia, Q. Liu, Adsorption of H-2 on aluminum-based metal-organic frameworks: A computational study, Computational Materials Science, 126 (2017) 176-181.
[41] S. Shahid, K. Nijmeijer, Performance and plasticization behavior of polymer–MOF membranes for gas separation at elevated pressures, Journal of Membrane Science, 470 (2014) 166-177.
[42] M. Bader, MB-ruler, in, Iffezheim, Germany, 2002-2014.
[43] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), in: Pure and Applied Chemistry, 1982, pp. 2201.
[44] H.B. Jeazet, C. Staudt, C. Janiak, A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone, Chem Commun (Camb), 48 (2012) 2140-2142.
[45] S.R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H.B. Nulwala, D.R. Luebke, N.L. Rosi, E. Albenze, Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles, Journal of Materials Chemistry A, 3 (2015) 5014-5022.
[46] A.F. Ismail, K.C. Khulbe, T. Matsuura, Gas Separation Membrane Materials and Structures, in: A.F. Ismail, K. Chandra Khulbe, T. Matsuura (Eds.) Gas Separation Membranes: Polymeric and Inorganic, Springer International Publishing, Cham, 2015, pp. 37-192.
[47] B. Li, S. Wei, L. Chen, Molecular simulation of CO2, N2and CH4adsorption and separation in ZIF-78 and ZIF-79, Molecular Simulation, 37 (2011) 1131-1142.
[48] J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane Science, 314 (2008) 123-133.
[49] A. Dehghani Kiadehi, A. Rahimpour, M. Jahanshahi, A.A. Ghoreyshi, Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation, Journal of Industrial and Engineering Chemistry, 22 (2015) 199-207.
[50] S. Kim, L. Chen, J.K. Johnson, E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment, Journal of Membrane Science, 294 (2007) 147-158.
[51] Y. Ban, Y. Li, Y. Peng, H. Jin, W. Jiao, X. Liu, W. Yang, Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties, Chemistry, 20 (2014) 11402-11409.
[52] M. Sarfraz, M. Ba-Shammakh, Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases, Journal of Industrial and Engineering Chemistry, 36 (2016) 154-162.
[53] K. Zahri, K.C. Wong, P.S. Goh, A.F. Ismail, Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation, RSC Advances, 6 (2016) 89130-89139.
[54] B. Zornoza, O. Esekhile, W.J. Koros, C. Tellez, J. Coronas, Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation, Separation and Purification Technology, 77 (2011) 137-145.
[55] B. Zornoza, B. Seoane, J.M. Zamaro, C. Tellez, J. Coronas, Combination of MOFs and zeolites for mixed-matrix membranes, Chemphyschem, 12 (2011) 2781-2785.
[56] S. Kim, E. Marand, High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix, Microporous and Mesoporous Materials, 114 (2008) 129-136.
[57] C.A. Scholes, G.Q. Chen, G.W. Stevens, S.E. Kentish, Plasticization of ultra-thin polysulfone membranes by carbon dioxide, Journal of Membrane Science, 346 (2010) 208-214.
[58] H.B. Tanh Jeazet, S. Sorribas, J.M. Roman-Marin, B. Zornoza, C. Tellez, J. Coronas, C. Janiak, Increased Selectivity in CO2/CH4Separation with Mixed-Matrix Membranes of Polysulfone and Mixed-MOFs MIL-101(Cr) and ZIF-8, European Journal of Inorganic Chemistry, 2016 (2016) 4363-4367.
指導教授 張博凱(Bor Kae Chang) 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明