參考文獻 |
[1] W.B. Li, Y.F. Zhang, Q.B.A. Li, G.L. Zhang, Metal-organic framework composite membranes: Synthesis and separation applications, Chem Eng Sci, 135 (2015) 232-257.
[2] M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A.A. Alomair, A. Perez, M.S. Rana, Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review, Separation and Purification Technology, 188 (2017) 431-450.
[3] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400.
[4] A.F. Ismail, P.Y. Lai, Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation, Separation and Purification Technology, 33 (2003) 127-143.
[5] I.G.W. Helen Julian, Polysulfone membranes for CO2:CH4 separation: State of the art, IOSR Journal of Engineering (2012) 484-495.
[6] A.L. Ahmad, J.K. Adewole, C.P. Leo, A.S. Sultan, S. Ismail, Preparation and gas transport properties of dual-layer polysulfone membranes for high pressure CO2removal from natural gas, Journal of Applied Polymer Science, 131 (2014) n/a-n/a.
[7] J.K. Adewole, A.L. Ahmad, S. Ismail, C.P. Leo, A.S. Sultan, Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4separation, Journal of Applied Polymer Science, 132 (2015).
[8] L.M. Robeson, Correlation of Separation Factor Versus Permeability for Polymeric Membranes, Journal of Membrane Science, 62 (1991) 165-185.
[9] H.B. Tanh Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Trans, 41 (2012) 14003-14027.
[10] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O′Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc Chem Res, 43 (2010) 58-67.
[11] R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O′Keeffe, O.M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, J Am Chem Soc, 131 (2009) 3875-3877.
[12] J. Yao, H. Wang, Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications, Chem Soc Rev, 43 (2014) 4470-4493.
[13] B. Seoane, J. Coronas, I. Gascon, M. Etxeberria Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?, Chem Soc Rev, 44 (2015) 2421-2454.
[14] J.P. Boom, Transport through zeolite ?lled polymeric membranes., in, University of Twente, The Netherlands, 1994.
[15] D.Q. Vu, W.J. Koros, S.J. Miller, T.-S. Chung, Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results, Journal of Membrane Science, 211 (2002) 311-334.
[16] Y.S. Li, F.Y. Liang, H.G. Bux, W.S. Yang, J. Caro, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, Journal of Membrane Science, 354 (2010) 48-54.
[17] M.J.C. Ordonez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, Molecular sieving realized with ZIF-8/MatrimidR mixed-matrix membranes, Journal of Membrane Science, 361 (2010) 28-37.
[18] T.T. Moore, W.J. Koros, Non-ideal effects in organic–inorganic materials for gas separation membranes, Journal of Molecular Structure, 739 (2005) 87-98.
[19] R. Adams, C. Carson, J. Ward, R. Tannenbaum, W. Koros, Metal organic framework mixed matrix membranes for gas separations, Microporous and Mesoporous Materials, 131 (2010) 13-20.
[20] T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science, 296 (2002) 519-522.
[21] J.E. Bachman, Z.P. Smith, T. Li, T. Xu, J.R. Long, Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals, Nat Mater, 15 (2016) 845-849.
[22] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, I.X.F.X. Llabres, J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation, Nat Mater, 14 (2015) 48-55.
[23] J.A. Sheffel, M. Tsapatsis, A model for the performance of microporous mixed matrix membranes with oriented selective flakes, Journal of Membrane Science, 295 (2007) 50-70.
[24] S. Choi, J. Coronas, E. Jordan, W. Oh, S. Nair, F. Onorato, D.F. Shantz, M. Tsapatsis, Layered silicates by swelling of AMH-3 and nanocomposite membranes, Angew Chem Int Ed Engl, 47 (2008) 552-555.
[25] K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science, 334 (2011) 72-75.
[26] J.K. Adewole, A.L. Ahmad, S. Ismail, C.P. Leo, A.S. Sultan, Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation, Journal of Applied Polymer Science, 132 (2015) 42205.
[27] Y.H. Deng, J.T. Chen, C.H. Chang, K.S. Liao, K.L. Tung, W.E. Price, Y. Yamauchi, K.C. Wu, A Drying-Free, Water-Based Process for Fabricating Mixed-Matrix Membranes with Outstanding Pervaporation Performance, Angew Chem Int Ed Engl, 55 (2016) 12793-12796.
[28] X.L. Dong, K. Huang, S.N. Liu, R.F. Ren, W.Q. Jin, Y.S. Lin, Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination, Journal of Materials Chemistry, 22 (2012) 19222-19227.
[29] T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 32 (2007) 483-507.
[30] M. Moaddeb, W.J. Koros, Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles, Journal of Membrane Science, 125 (1997) 143-163.
[31] M. Mahdyarfar, T. Mohammadi, A. Mohajeri, Defect formation and prevention during the preparation of supported carbon membranes, New Carbon Materials, 28 (2013) 369-377.
[32] F. Dorosti, M. Omidkhah, R. Abedini, Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation, Chemical Engineering Research & Design, 92 (2014) 2439-2448.
[33] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60 (1938) 309-319.
[34] J.G. M.P. Gomez-Tena, J. Toledo,E. Zumaquero, C. Machi, RELATIONSHIP BETWEEN THE SPECIFIC SURFACE AREA PARAMETERS DETERMINED USING DIFFERENT ANALYTICAL TECHNIQUES, (2013).
[35] Y. Ban, Y. Li, X. Liu, Y. Peng, W. Yang, Solvothermal synthesis of mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology, Microporous and Mesoporous Materials, 173 (2013) 29-36.
[36] M. Valero, B. Zornoza, C. Tellez, J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers, Microporous and Mesoporous Materials, 192 (2014) 23-28.
[37] M. Lomax, Permeation of gases and vapours through polymer films and thin sheet—part I, Polymer Testing, 1 (1980) 105-147.
[38] W. Liang, C.J. Coghlan, F. Ragon, M. Rubio-Martinez, D.M. D′Alessandro, R. Babarao, Defect engineering of UiO-66 for CO2 and H2O uptake - a combined experimental and simulation study, Dalton Trans, 45 (2016) 4496-4500.
[39] L.Z. Xia, F.L. Wang, Prediction of hydrogen storage properties of Zr-based MOFs, Inorganica Chimica Acta, 444 (2016) 186-192.
[40] L.Z. Xia, Q. Liu, Adsorption of H-2 on aluminum-based metal-organic frameworks: A computational study, Computational Materials Science, 126 (2017) 176-181.
[41] S. Shahid, K. Nijmeijer, Performance and plasticization behavior of polymer–MOF membranes for gas separation at elevated pressures, Journal of Membrane Science, 470 (2014) 166-177.
[42] M. Bader, MB-ruler, in, Iffezheim, Germany, 2002-2014.
[43] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), in: Pure and Applied Chemistry, 1982, pp. 2201.
[44] H.B. Jeazet, C. Staudt, C. Janiak, A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone, Chem Commun (Camb), 48 (2012) 2140-2142.
[45] S.R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H.B. Nulwala, D.R. Luebke, N.L. Rosi, E. Albenze, Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles, Journal of Materials Chemistry A, 3 (2015) 5014-5022.
[46] A.F. Ismail, K.C. Khulbe, T. Matsuura, Gas Separation Membrane Materials and Structures, in: A.F. Ismail, K. Chandra Khulbe, T. Matsuura (Eds.) Gas Separation Membranes: Polymeric and Inorganic, Springer International Publishing, Cham, 2015, pp. 37-192.
[47] B. Li, S. Wei, L. Chen, Molecular simulation of CO2, N2and CH4adsorption and separation in ZIF-78 and ZIF-79, Molecular Simulation, 37 (2011) 1131-1142.
[48] J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane Science, 314 (2008) 123-133.
[49] A. Dehghani Kiadehi, A. Rahimpour, M. Jahanshahi, A.A. Ghoreyshi, Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation, Journal of Industrial and Engineering Chemistry, 22 (2015) 199-207.
[50] S. Kim, L. Chen, J.K. Johnson, E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment, Journal of Membrane Science, 294 (2007) 147-158.
[51] Y. Ban, Y. Li, Y. Peng, H. Jin, W. Jiao, X. Liu, W. Yang, Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties, Chemistry, 20 (2014) 11402-11409.
[52] M. Sarfraz, M. Ba-Shammakh, Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases, Journal of Industrial and Engineering Chemistry, 36 (2016) 154-162.
[53] K. Zahri, K.C. Wong, P.S. Goh, A.F. Ismail, Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation, RSC Advances, 6 (2016) 89130-89139.
[54] B. Zornoza, O. Esekhile, W.J. Koros, C. Tellez, J. Coronas, Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation, Separation and Purification Technology, 77 (2011) 137-145.
[55] B. Zornoza, B. Seoane, J.M. Zamaro, C. Tellez, J. Coronas, Combination of MOFs and zeolites for mixed-matrix membranes, Chemphyschem, 12 (2011) 2781-2785.
[56] S. Kim, E. Marand, High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix, Microporous and Mesoporous Materials, 114 (2008) 129-136.
[57] C.A. Scholes, G.Q. Chen, G.W. Stevens, S.E. Kentish, Plasticization of ultra-thin polysulfone membranes by carbon dioxide, Journal of Membrane Science, 346 (2010) 208-214.
[58] H.B. Tanh Jeazet, S. Sorribas, J.M. Roman-Marin, B. Zornoza, C. Tellez, J. Coronas, C. Janiak, Increased Selectivity in CO2/CH4Separation with Mixed-Matrix Membranes of Polysulfone and Mixed-MOFs MIL-101(Cr) and ZIF-8, European Journal of Inorganic Chemistry, 2016 (2016) 4363-4367. |