參考文獻 |
1. Jain, P.K., et al., Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics, 2007. 2(3): p. 107-118.
2. Robel, I., et al., Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. Journal of the American Chemical Society, 2006. 128(7): p. 2385-2393.
3. Kongkanand, A., et al., Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe? TiO2 Architecture. Journal of the American Chemical Society, 2008. 130(12): p. 4007-4015.
4. Ankireddy, K., et al., Highly Conductive Short Chain Carboxylic Acid Encapsulated Silver Nanoparticle Based Inks for Direct Write Technology Applications. Journal of Material Chemistry C, 2013. 1(3): p. 572-579.
5. Enomoto, K., et al., Unique Hydrophobization and Hybridization via Direct Phase Transfer of ZrO2 Nanoparticles from Water to Toluene Producing Highly Transparent Polystyrene and Poly(methyl methacrylate) Hybrid Bulk Materials. Macromolecules, 2017. 50(24): p. 9713-9725.
6. Li, L., et al., Solubility Studies of Inorganic-organic Hybrid Nanoparticle Photoresists with different Surface Functional Groups. Nanoscale, 2016. 8(3): p. 1338-43.
7. Loredana, S. and J.P. Davim, eds. Surface Engineering Techniques and Applications: Research Advancements. 2014, IGI Global: Hershey, PA, USA. 1-347.
8. Arita, T., et al., Dispersion of Fatty Acid Surface Modified Ceria Nanocrystals in Various Organic Solvents. Industrial & Engineering Chemistry Research, 2009. 49(4): p. 1947-1952.
9. Chen, C.W., X.S. Yang, and A.S.T. Chiang, An Aqueous Process for the Production of Fully Dispersible t-ZrO2 Nanocrystals. Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(3): p. 296-301.
10. Iijima, M., et al., Anionic Surfactant with Hydrophobic and Hydrophilic Chains for Nanoparticle Dispersion and Shape Memory Polymer Nanocomposites. Journal of the American Chemical Society, 2009. 131(45): p. 16342-16343.
11. Pujari, S.P., et al., Tribology and Stability of Organic Monolayers on CrN: a Comparison among Silane, Phosphonate, Alkene, and Alkyne Chemistries. Langmuir, 2013. 29(33): p. 10405-10415.
12. Zeininger, L., et al., Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO2 Nanoparticles. Chemistry, 2016. 22(38): p. 13506-12.
13. Hansen, C.M., The Three Dimensional Solubility Parameter. J. Paint Technol, 1967. 39: p. 105.
14. Fritz, G., et al., Electrosteric Stabilization of Colloidal Dispersions. Langmuir, 2002. 18(16): p. 6381-6390.
15. Israelachvili, J.N., Intermolecular and Surface Forces. Third ed. 2011, California: Elsevier.
16. Verwey, E.J.W. and J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids. 1948, New York: Elsevier.
17. Vincent, B., et al., Depletion Flocculation in Dispersions of Sterically-stabilised Particles (“soft spheres”). Colloids and Surfaces, 1986. 18(2–4): p. 261-281.
18. 王藪勳, 奈米結晶氧化鋯合成與分散, in 化學工程與材料工程學系. 2014, 國立中央大學.
19. Hens, Z. and J.C. Martins, A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals. Chemistry of Materials, 2013. 25(8): p. 1211-1221.
20. Wang, S.-H., et al., Hansen Solubility Parameter Analysis on the Dispersion of Zirconia Nanocrystals. Journal of Colloid and Interface Science, 2013. 407: p. 140-147.
21. Zimmerman, P.A., et al., Non-aggregating Nanoparticles and the Use Thereof. 2012, Google Patents. |