博碩士論文 105223028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.128.198.21
姓名 盧寧方(Ning-Fang Lu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備含鈷銅/鈷鎳金屬奈米顆粒於具官能基三維結構中孔洞材料之催化應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分為三個部分,在第一部分將具羧酸官能化且擴孔的中孔洞二氧化矽SBA-16,簡稱為LP-S16C-x,x = [CES/(CES+TEOS)]。將LP-S16C-x含浸於鈷銅金屬離子前驅液,利用熱還原法將金屬離子還原成金屬奈米顆粒(CoyCu10-y-LP-S16C-x-TD)。含浸的過程中,在鹼性環境下 (pH = 9) ,中孔洞表面上的羧酸官能基團(-COOH)去質子化形成負離子(-COO-),因此有靜電作用力,能夠有效地吸引金屬離子進入孔洞中,成功還原鈷銅奈米金屬顆粒在此中孔洞材料,其金屬顆粒尺寸為5 - 7 nm之間。將材料應用於4-Nitrophenol還原催化反應之觸媒,Co2Cu8-LP-S16C-20表現最佳的催化效果,其活性參數為1519.5 s-1gmetal-1。
在第二部分中,將LP-S16C-20含浸於鈷銅離子前驅液,利用化學還原法將金屬離子還原成金屬奈米顆粒 (CoyCu10-y-LP-S16C-20),其金屬顆粒大小為2 - 4 nm之間。將材料使用於硼烷氨水解製氫的反應中,比起單金屬材料,具有鈷銅金屬的材料表現了較佳的催化活性,當鈷銅比例為4:6 (Co4Cu6-LP-S16C-20),表現最好的催化效果,其在反應中的轉換率為16.36 H2 mol/metal mol‧min、活化能為38.10 kJ/mol。
第三部分將LP-S16C-20含浸於鈷鎳離子前驅液,利用化學還原法還原金屬 (CoyNi10-y-LP-S16C-20),金屬的顆粒大小約為2 – 7 nm,將具有金屬之中孔洞材料進行硼烷氨水解製氫反應,發現具有鈷鎳金屬的材料表現較佳的催化活性,Co6Ni4-LP-S16C-20的轉換率為18.95 H2 mol/metal mol‧min、活化能為36.43 kJ/mol。結果顯示含奈米金屬之中孔洞材料有效提升硼烷氨水解反應的反應速率。
摘要(英) In first project, we report that the bimetallic cobalt-copper alloy nanoparticles with a particle size about 5.3 nm are successfully supported in the cage-type mesopores of large pore SBA-16 mesoporous silica (sample denoted as CoyCu10-y-LP-S16C-x-TD) functionalized with carboxylic acids (–COOH) groups. During the impregnation of metal solutions ,the –COOH groups on the surface of cage-type mesopore deprotonate under the alkaline condition (pH=9) and become negatively charged, with efficiently interact with Co2+/Cu2+ cations and allow facile fabrication of Co-Cu alloy nanoparticles. The CoyCu10-y-LP-S16C-x-TD catalyst exhibits a high catalytic activity with the activity parameter of 1519.5 (s-1gmetal-1) when it was used as the catalyst for the reduction of 4-nitrophenol.

In second project, non-noble bimetallic CoyCu10-y nanoparticles were successfully supported on the LP-S16C-20 (CoyCu10-y-LP-S16C-20-DD) by using chemical reduction with aqueous solution of NaBH4 and NH3BH3. While the cost-effective CoyCu10-y (2 - 4nm) was used for the hydrolysis of ammonia borane, the Co4Cu6-LP-S16C-20-DD showed high catalytic properties with turnover frequency of 16.36 H2 mol/metal mol‧min and activation energy of 38.10 kJ/mol. The synergistic effect between Co and Cu species plays an important role for the improved performance in the catalytic hydrolysis of ammonia borane.

In third project, we report on the synthesis of CoyNi10-y nanoparticles supported on LP-S16C-20 and their catalytic activities for the hydrolytic dehydrogenation of ammonia borane. The catalysts of CoyNi10-y-LP-S16C-x-DD have been prepared by chemical reduction with aqueous solution of NaBH4 and NH3BH3. Compared with their monometallic counterparts, the bimetallic CoNi alloy NPs (2-7 nm) present higher catalytic activity for hydrolytic dehydrogenation of ammonia borane. The Co6Ni4-LP-S16C-20-DD nanocatalyst showed high catalytic properties with turnover frequency of 18.95 H2 mol/metal mol‧min and activation energy of 36.43 kJ/mol. Alloying Co with Ni provides a required synergistic effect on the catalysis in the catalytic hydrolytic dehydrogenation of ammonia borane.
關鍵字(中) ★ 對硝基苯酚
★ 硼烷氨
關鍵字(英) ★ 4-nitrophenol
★ ammonia-borane
論文目次 中文摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 xi
表目錄 xix
第一章 序論 1
1-1中孔洞二氧化矽材料 1
1-1-1中孔洞材料 1
1-2界面活性劑之簡介 4
1-2-1界面活性劑的種類 5
1-2-2微胞的形成 7
1-2-3 界面活性劑與矽氧化物的相互作用 8
1-3官能基化之中孔洞材料 10
1-4 文獻回顧 12
1-4-1 中孔洞材料SBA-16之合成與介紹 12
1-4-2 具羧酸官能基之中孔洞材料 14
1-4-3 中孔洞材料吸附金屬之相關研究 20
1-4-4 金屬奈米顆粒對4-Nitrophenol催化還原反應之文獻 25
1-4-5 硼烷氨水解製氫之文獻 32
1-5 研究動機及目的 36
第二章 實驗部分 38
2-1 實驗藥品 38
2-2 實驗步驟 40
2-2-1具羧酸官能基且擴孔的中孔洞矽材SBA-16之合成 40
2-2-2以鍛燒或硫酸溶液去除孔洞中的模板 41
2-2-3 LP-S16C-x 吸附鈷/銅/鎳離子製備奈米金屬 42
2-2-3.1 利用熱還原法還原鈷銅離子製備鈷銅奈米金屬(CoyCu10-y-LPS16C-x-TD) 42
2-2-3.2 利用雙還原劑進行化學還原法還原鈷銅離子製備鈷銅奈米金屬 (CoyCu10-y-LP-S16C-x-DD) 43
2-2-3.3 利用雙還原劑進行化學還原法還原鈷鎳離子製備鈷鎳奈米金屬 (CoyNi10-y-LP-S16C-x-DD) 44
2-2-4 材料對4-Nitrophenol進行催化還原反應 45
2-2-4.1 4-Nitrophenol之降解反應 45
2-2-4.2 材料回收之重複使用實驗 45
2-2-5 材料對硼烷氨進行催化水解產氫之反應 47
2-2-5.1 硼烷氨水解產氫實驗 47
2-2-5.2 材料回收之重複使用實驗 49
2-3 實驗設備 50
2-3-1 實驗合成設備 50
2-3-2 實驗鑑定儀器 50
第三章 結果與討論 52
3-1 CoCu-LP-S16C-x-TD材料系列 52
3-1-1 基本性質鑑定 52
3-1-1.1 SAXRD 繞射圖譜 52
3-1-1.2 WAXRD 繞射圖譜 55
3-1-1.3 13C CP/MAS NMR 57
3-1-1.4 等溫氮氣吸脫附 58
3-1-1.5 SEM影像 63
3-1-1.6 TEM影像 65
3-1-1.7 ICP-MS結果 68
3-1-2 LP-S16C-x 吸附金屬之4-Nitrophenol催化還原反應 69
3-1-2.1 CoyCu10-y-LP-S16C-0-TD對4-Nitrophenol催化還原反應之結果 71
3-1-2.2 CoyCu10-y-LP-S16C-20-TD對4-Nitrophenol催化還原反應之結果 78
3-1-2.3 Co2Cu8-LP-S16C-20-TD回收重複使用性 83
3-2 CoCu-LP-S16C-x-DD材料系列 85
3-2-1 基本性質鑑定 85
3-2-1.1 SAXRD 繞射圖譜 85
3-2-1.2 WAXRD 繞射圖譜 87
3-2-1.3 等溫氮氣吸脫附 88
3-2-1.4 SEM影像 90
3-2-1.5 TEM影像 91
3-2-1.6 ICP-MS結果 97
3-2-1.7 磁性鑑定 98
3-2-2 LP-S16C-x 吸附金屬之硼烷氨水解產氫反應 100
3-2-2.1 以熱還原法還原金屬之催化活性 101
3-2-2.2 以化學還原法還原不同鈷銅金屬比例之催化活性 102
3-2-2.3 含浸不同濃度金屬前驅液之催化活性 104
3-2-2.4 Co4Cu6-LP-S16C-20-DD之動力學探討 106
3-2-2.5 Co4Cu6-LP-S16C-20-DD之回收利用 110
3-3 CoNi-LP-S16C-x-DD材料系列 113
3-3-1 基本性質鑑定 113
3-3-1.1 SAXRD 繞射圖譜 113
3-3-1.2 WAXRD 繞射圖譜 115
3-3-1.3 等溫氮氣吸脫附 116
3-3-1.4 SEM影像 118
3-3-1.5 TEM 影像 119
3-3-1.6 ICP-MS結果 123
3-3-1.7 磁性鑑定 124
3-3-2 LP-S16C-x 吸附金屬之硼烷氨水解產氫反應 125
3-3-2.1以不同的鈷鎳金屬比例比較其催化活性 126
3-3-2.2 Co6Ni4-LPS16C-20-DD之動力學探討 128
3-3-2.3 Co6Ni4-LP-S16C-20-DD之回收利用 132
第四章 結論 136
第五章 參考文獻 137
第六章 附錄 144
6-1 實驗步驟 144
6-1-1 材料CoCu-LP-S16C-20對糠醛之氫化反應 144
6-2 實驗結果 144
參考文獻 1. 吳嘉文, 中孔洞奈米材料之孔洞方向控制及其應用. 2009.
2. Beck, J. S.; Vartuli, J.; Roth, W. J.; Leonowicz, M.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D. H.; Sheppard, E.; McCullen, S., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
3. Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710.
4. Gibson, L., Mesosilica materials and organic pollutant adsorption: part A removal from air. Chemical Society Reviews 2014, 43 (15), 5163-5172.
5. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 1998, 279 (5350), 548-552.
6. Li, G.; Zhao, Z.; Liu, J.; Jiang, G., Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of hazardous materials 2011, 192 (1), 277-283.
7. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascon, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials 2009, 163 (1), 213-221.
8. Yan, Z.; Tao, S.; Yin, J.; Li, G., Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. Journal of Materials Chemistry 2006, 16 (24), 2347-2353.
9. Deere, J.; Magner, E.; Wall, J.; Hodnett, B., Adsorption and activity of cytochrome c on mesoporous silicates Chemical Communications 2001, (5), 465-465.
10. Yang, Y.-C.; Deka, J. R.; Wu, C.-E.; Tsai, C.-H.; Saikia, D.; Kao, H.-M., Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption. Journal of Materials Science 2017, 52 (11), 6322-6340.
11. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
12. Hao, Y.; Chong, Y.; Li, S.; Yang, H., Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols. The Journal of Physical Chemistry C 2012, 116 (11), 6512-6519.
13. Li, M.; Hu, J.; Lu, H., A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catalysis Science & Technology 2016, 6 (19), 7186-7192.
14. Karimian, D.; Yadollahi, B.; Mirkhani, V., Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous and Mesoporous Materials 2017, 247, 23-30.
15. Zhou, H.; Zhu, S.; Honma, I.; Seki, K., Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chemical Physics Letters 2004, 396 (4-6), 252-255.
16. Sing, K.; Everett, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemienjewska, T., IUPAC Manual of Symbols and Terminology Appendix 2, Pt. 1. Colloid and Surface Chemistry, Pure Appl. Chem 1972, 31, 578.
17. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
18. Fayed, T. A.; Shaaban, M. H.; El?Nahass, M. N.; Hassan, F. M., Hybrid organic–inorganic mesoporous silicates as optical nanosensor for toxic metals detection. International Journal of Chemical and Applied Biological Sciences 2014, 1 (6), 74.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of lipid bilayers and vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1977, 470 (2), 185-201.
20. Soler-Illia, G. J. d. A.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical reviews 2002, 102 (11), 4093-4138.
21. Holmberg, K.; Jonsson, B.; Kronberg, B.; Lindman, B., Surfactants and polymers in aqueous solution. Wiley Online Library: 2003; Vol. 2.
22. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317.
23. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society 1998, 120 (24), 6024-6036.
24. Kim, T.-W.; Ryoo, R.; Kruk, M.; Gierszal, K. P.; Jaroniec, M.; Kamiya, S.; Terasaki, O., Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. The Journal of Physical Chemistry B 2004, 108 (31), 11480-11489.
25. Zhang, P.; Wu, Z.; Xiao, N.; Ren, L.; Meng, X.; Wang, C.; Li, F.; Li, Z.; Xiao, F.-S., Ordered cubic mesoporous silicas with large pore sizes synthesized via high-temperature route. Langmuir 2009, 25 (22), 13169-13175.
26. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping enzyme in a functionalized nanoporous support. Journal of the American Chemical Society 2002, 124 (38), 11242-11243.
27. Liu, N.; Assink, R. A.; Brinker, C. J., Synthesis and characterization of highly ordered mesoporous thin films with –COOH terminated pore surfaces. Chemical Communications 2003, (3), 370-371.
28. Yang, C.-m.; Zibrowius, B.; Schuth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chemical Communications 2003, (14), 1772-1773.
29. Tang, Q.; Xu, Y.; Wu, D.; Sun, Y., A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. Journal of Solid State Chemistry 2006, 179 (5), 1513-1520.
30. Bruzzoniti, M. C.; Prelle, A.; Sarzanini, C.; Onida, B.; Fiorilli, S.; Garrone, E., Retention of heavy metal ions on SBA?15 mesoporous silica functionalised with carboxylic groups. Journal of separation science 2007, 30 (15), 2414-2420.
31. Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S., Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. Journal of Materials Chemistry 2007, 17 (12), 1216-1221.
32. Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S.; Fey, G. T.; Kao, H.-M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chemical Communications 2009, (33), 5018-5020.
33. Chen, C.-S.; Chen, C.-C.; Chen, C.-T.; Kao, H.-M., Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups. Chemical Communications 2011, 47 (8), 2288-2290.
34. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
35. Chang, W.-C.; Deka, J. R.; Wu, H.-Y.; Shieh, F.-K.; Huang, S.-Y.; Kao, H.-M., Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Applied Catalysis B: Environmental 2013, 142, 817-827.
36. Tsai, C.-H.; Chang, W.-C.; Saikia, D.; Wu, C.-E.; Kao, H.-M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. Journal of hazardous materials 2016, 309, 236-248.
37. Ko, C. H.; Ryoo, R., Imaging the channels in mesoporous molecular sieves with platinum. Chemical Communications 1996, (21), 2467-2468.
38. Mercier, L.; Pinnavaia, T. J., Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg (II) uptake. Environmental Science & Technology 1998, 32 (18), 2749-2754.
39. Chi, Y.-S.; Lin, H.-P.; Mou, C.-Y., CO oxidation over gold nanocatalyst confined in mesoporous silica. Applied Catalysis A: General 2005, 284 (1-2), 199-206.
40. Zhao, Y.; Qi, Y.; Wei, Y.; Zhang, Y.; Zhang, S.; Yang, Y.; Liu, Z., Incorporation of Ag nanostructures into channels of nitrided mesoporous silica. Microporous and Mesoporous Materials 2008, 111 (1-3), 300-306.
41. Chen, C.; Lai, Y.; Chen, T.; Chen, C.; Lee, J.; Hsu, C.; Kao, H., Synthesis and characterization of Pt nanoparticles with different morphologies in mesoporous silica SBA-15 for methanol oxidation reaction. Nanoscale 2014, 6 (21), 12644-12654.
42. Chen, C.-S.; Budi, C. S.; Wu, H.-C.; Saikia, D.; Kao, H.-M., Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous silica as highly active catalysts for CO2 hydrogenation. ACS Catalysis 2017, 7 (12), 8367-8381.
43. Yang, X.; Zhong, H.; Zhu, Y.; Jiang, H.; Shen, J.; Huang, J.; Li, C., Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. Journal of Materials Chemistry A 2014, 2 (24), 9040-9047.
44. Sun, Y.; Xu, L.; Yin, Z.; Song, X., Synthesis of copper submicro/nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenol reduction. Journal of Materials Chemistry A 2013, 1 (39), 12361-12370.
45. Deka, P.; Deka, R. C.; Bharali, P., In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New Journal of Chemistry 2014, 38 (4), 1789-1793.
46. Li, X.; Zeng, C.; Jiang, J.; Ai, L., Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. Journal of Materials Chemistry A 2016, 4 (19), 7476-7482.
47. Mondal, A.; Mondal, A.; Adhikary, B.; Mukherjee, D. K., Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions. Bulletin of Materials Science 2017, 40 (2), 321-328.
48. Naseer, F.; Ajmal, M.; Bibi, F.; Farooqi, Z. H.; Siddiq, M., Copper and cobalt nanoparticles containing poly (acrylic acid?co?acrylamide) hydrogel composites for rapid reduction of 4?nitrophenol and fast removal of malachite green from aqueous medium. Polymer Composites 2017.
49. Chandra, M.; Xu, Q., A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia–borane. Journal of Power Sources 2006, 156 (2), 190-194.
50. Xu, Q.; Chandra, M., Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. Journal of Power Sources 2006, 163 (1), 364-370.
51. Yang, Y.; Zhang, F.; Wang, H.; Yao, Q.; Chen, X.; Lu, Z.-H., Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation. Journal of Nanomaterials 2014, 2014, 3.
52. Li, J.; Zhu, Q.-L.; Xu, Q., Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catalysis Science & Technology 2015, 5 (1), 525-530.
53. Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schuth, F., Stepwise removal of the copolymer template from mesopores and micropores in SBA-15. Chemistry of materials 2004, 16 (15), 2918-2925.
54. Deka, J. R.; Kao, H. M.; Huang, S. Y.; Chang, W. C.; Ting, C. C.; Rath, P. C.; Chen, C. S., Ethane?Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acid Groups: Synthesis, Bifunctionalization, and Fabrication of Metal Nanoparticles. Chemistry-A European Journal 2014, 20 (3), 894-903.
55. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
56. Zhao, X.; Li, Q.; Ma, X.; Xiong, Z.; Quan, F.; Xia, Y., Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol. RSC Advances 2015, 5 (61), 49534-49540.
57. Chandra, M.; Xu, Q., Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. Journal of power sources 2006, 159 (2), 855-860.
58. Yao, Q.; Lu, Z.-H.; Wang, Y.; Chen, X.; Feng, G., Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane. The Journal of Physical Chemistry C 2015, 119 (25), 14167-14174.
59. Krishna, R.; Fernandes, D. M.; Ventura, J.; Freire, C.; Titus, E., Novel synthesis of highly catalytic active Cu@ Ni/RGO nanocomposite for efficient hydrogenation of 4-nitrophenol organic pollutant. International Journal of Hydrogen Energy 2016, 41 (27), 11608-11615.
60. Xiao, Z.-Y.; Zhai, S.-R.; Ma, X.-P.; Zhao, Z.-Y.; Wang, X.; Bai, H.; An, Q.-D., Monolithic Cu/C hybrid beads with well-developed porosity for the reduction of 4-nitrophenol to 4-aminophenol. New Journal of Chemistry 2017, 41 (22), 13230-13234.
61. Rath, P. C.; Saikia, D.; Mishra, M.; Kao, H.-M., Exceptional catalytic performance of ultrafine Cu2O nanoparticles confined in cubic mesoporous carbon for 4-nitrophenol reduction. Applied Surface Science 2018, 427, 1217-1226.
62. Zhong, Y.; Gu, Y.; Yu, L.; Cheng, G.; Yang, X.; Sun, M.; He, B., APTES-functionalized Fe3O4 microspheres supported Cu atom-clusters with superior catalytic activity towards 4-nitrophenol reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 547, 28-36.
63. Yan, J.-M.; Wang, Z.-L.; Wang, H.-L.; Jiang, Q., Rapid and energy-efficient synthesis of a graphene–CuCo hybrid as a high performance catalyst. Journal of Materials Chemistry 2012, 22 (22), 10990-10993.
64. Li, C.; Zhou, J.; Gao, W.; Zhao, J.; Liu, J.; Zhao, Y.; Wei, M.; Evans, D. G.; Duan, X., Binary Cu–Co catalysts derived from hydrotalcites with excellent activity and recyclability towards NH 3 BH 3 dehydrogenation. Journal of Materials Chemistry A 2013, 1 (17), 5370-5376.
65. Sang, W.; Wang, C.; Zhang, X.; Yu, X.; Yu, C.; Zhao, J.; Wang, X.; Yang, X.; Li, L., Dendritic Co0. 52Cu0. 48 and Ni0. 19Cu0. 81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane. International Journal of Hydrogen Energy 2017, 42 (52), 30691-30703.
66. Du, Y.; Cao, N.; Yang, L.; Luo, W.; Cheng, G., One-step synthesis of magnetically recyclable rGO supported Cu@ Co core–shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane. New Journal of Chemistry 2013, 37 (10), 3035-3042.
67. Wang, H.; Zhou, L.; Han, M.; Tao, Z.; Cheng, F.; Chen, J., CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds 2015, 651, 382-388.
68. Bulut, A.; Yurderi, M.; Ertas, ?. E.; Celebi, M.; Kaya, M.; Zahmakiran, M., Carbon dispersed copper-cobalt alloy nanoparticles: A cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane. Applied Catalysis B: Environmental 2016, 180, 121-129.
69. Liu, Y.; Zhang, J.; Guan, H.; Zhao, Y.; Yang, J.-H.; Zhang, B., Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane. Applied Surface Science 2018, 427, 106-113.
70. Yang, X.; Li, L.; Sang, W.; Zhao, J.; Wang, X.; Yu, C.; Zhang, X.; Tang, C., Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Journal of Alloys and Compounds 2017, 693, 642-649.
71. Yang, L.; Su, J.; Meng, X.; Luo, W.; Cheng, G., In situ synthesis of graphene supported Ag@ CoNi core–shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. Journal of Materials Chemistry A 2013, 1 (34), 10016-10023.
72. Feng, W.; Yang, L.; Cao, N.; Du, C.; Dai, H.; Luo, W.; Cheng, G., In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane. international journal of hydrogen energy 2014, 39 (7), 3371-3380.
73. Wen, M.; Zhou, S.; Wu, Q.; Zhang, J.; Wu, Q.; Wang, C.; Sun, Y., Construction of NiCo–Pt nanopolyhedron inlay-structures and their highly efficient catalysis hydrolytic dehydrogenation toward ammonia borane. Journal of Power Sources 2013, 232, 86-92.
74. Meng, X.; Yang, L.; Cao, N.; Du, C.; Hu, K.; Su, J.; Luo, W.; Cheng, G., Graphene?Supported Trimetallic Core–Shell Cu@ CoNi Nanoparticles for Catalytic Hydrolysis of Amine Borane. ChemPlusChem 2014, 79 (2), 325-332.
75. Wang, Q.; Zhang, Z.; Liu, J.; Liu, R.; Liu, T., Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: Highly efficient hydrolysis of ammonia borane. Materials Chemistry and Physics 2018, 204, 58-61.
76. Audemar, M.; Ciotonea, C.; De Oliveira Vigier, K.; Royer, S.; Ungureanu, A.; Dragoi, B.; Dumitriu, E.; Jerome, F., Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA?15 Catalyst. ChemSusChem 2015, 8 (11), 1885-1891.
77. Zhao, T.-J.; Zhang, Y.-N.; Wang, K.-X.; Su, J.; Wei, X.; Li, X.-H., General transfer hydrogenation by activating ammonia-borane over cobalt nanoparticles. RSC Advances 2015, 5 (124), 102736-102740.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2018-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明