博碩士論文 105229004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.222.98.29
姓名 劉柏彥(Po-Yen Liu)  查詢紙本館藏   畢業系所 天文研究所
論文名稱
(An Investigation on the Origin of Centaurs’ Color-Inclination Relation)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 半人馬小行星的表面顏色之雙峰分佈的起源一直存在著爭論。
目前有兩種解釋這種雙峰型顏色分佈的理論:(一)某種能導致
半人馬小行星表面性質變化的演化機制;(二)半人馬小行星的
起源處便存在著成分之差異。更有趣的是,半人馬小行星可能存
在軌道傾斜度和顏色之間的相關性,即藍色(B-R?1.4)和紅色(B-
R>1.4)半人馬小行星分別具有高傾角和低傾角的分佈特徵。在本
研究中,我們在上述兩種解釋雙峰型顏色分佈的理論基礎上,提
出了兩種可能可解釋顏色與傾角關係的假說。我們考慮:(一)假
設正被擾動中的柯伊伯帶天體(SKBOs)原本沒有顏色與傾角的關
係,但當他們演化成半人馬小行星且近日點位於土星軌道內時,土星
和木星的引力效應可能變得強大到足以大幅改變它們的的傾角,同
時,來自太陽的熱輻射也剛好熱到足以引發它們的彗星活動,造成其
表面顏色變藍;(二)假設SKBOs也有顏色與傾向的關係(目前還不
清楚),且當它們演化成半人馬小行星時,這一關係在統計上得到
了保留。我們對目前觀察到的158個半人馬小行星(其中58個擁有
顏色資料)和82個SKBOs進行了數值模擬,以研究它們的動力學演
化。我們的研究結果顯示,半人馬小行星的顏色與傾角關係更有
可能是從SKBOs繼承而來。我們發現,我們的假說(二)更可能
用來解釋半人馬小行星之顏色與傾角的關係。
摘要(英) Since its discovery, there has been a debate on the origin of the bimodal color distribution of Centaurs in the past few decades. In principle, two theories have been proposed to explain this bimodal color distribution: (1) evolutionary processes resulting in changes of the surface properties of Centaurs, and, (2) compositional di?erences inherited from the primordial origin of Centaurs. What might be more intriguing is that Centaurs also show a correlation between their orbital inclinations and colors that the blue (B-R?1.4) and red (B-R>1.4) Centaurs tend to be characterized by high and low inclination distributions, respectively. In this study, we consider two hypotheses to explain the color-inclination relation based on the two major theories of explaining the bimodal
color distribution mentioned above. Namely, we consider: (1) Initially, the scattering Kuiper Belt objects (SKBOs) have no color-inclination relation. When they evolve into Centaurs with perihelion distances within Saturn’s orbit, the gravitational e?ect of Saturn or Jupiter becomes strong enough to greatly change the inclinations of Centaurs. At the same time, the thermal radiation is also strong enough to trigger cometary activities to produce the blue surface colors; (2) Assuming that the SKBOs also
have color-inclination relation (which is unclear yet), and this relation is statistically preserved when they evolved into Centaurs. We perform numerical simulations on 158 observed Centaurs (58 of them have color information) and 82 observed SKBOs to investigate their dynamical evolution. Our results show that the color-inclination relation of Centaurs is more likely to inherit from SKBOs. We ?nd that our hypothesis (2) is more likely to explain
the color-inclination relation of Centaurs.
關鍵字(中) ★ 半人馬小行星 關鍵字(英) ★ Centaur
★ inclination
★ color
★ KBO
論文目次 摘要 ...................................................................... i
Abstract ............................................................... ii
謝誌 ...................................................................... iii
Contents ................................................................ iv
List of ?gures ........................................................ v
List of tables ......................................................... vii
1. Introduction .................................................... 1
1.1 The Kuiper Belt as the origin of the short-period comets ....... 1
1.2 Current understanding of the Centaurs.................................... 4
1.3 The color bimodality and color-inclination relation of Cen-
taurs ......................................................................................... 5
1.4 Color change of Centaurs induced by evolutionary process...... 8
1.5 A primordial color di?erence in Centaurs ................................ 10
2. Methods........................................................... 12
2.1 Numerical simulations .............................................................. 12
2.2 Run A....................................................................................... 12
2.3 Run B....................................................................................... 13
2.4 Dynamical classi?cation ........................................................... 14
3. Results............................................................. 15
3.1 Dynamical analyses of the observed Centaurs (Run A) ........... 15
3.2 The evolution and end states of the SKBOs (Run B) .............. 22
3.3 The q-based test ....................................................................... 24
3.4 The i-based test........................................................................ 27
4. Discussions ...................................................... 34
4.1 Saturn as a barrier for the dynamical lifetimes of Centaurs..... 34
4.2 The erased color-inclination relation in Jupiter-Saturn region . 37
5. Summary ......................................................... 41
References ............................................................. 43
Appendix............................................................... 47
參考文獻 Bauer, J. M., Grav, T., Blauvelt, E., Mainzer, A. K., Masiero, J. R.,
Stevenson, R., Kramer, E., Fern’andez, Y. R., Lisse, C. M., Cutri, R. M.,
Weissman, P. R., Dailey, J. W., Masci, F. J., Walker, R., Waszczak,
A., Nugent, C. R., Meech, K. J., Lucas, A., Pearman, G., Wilkins, A.,
Watkins, J., Kulkarni, S., Wright, E. L., WISE Team, & PTF Team
(2013). Centaurs and Scattered Disk Objects in the Thermal Infrared:
Analysis of WISE/NEOWISE Observations. apj, 773, 22.
Brasser, R., Schwamb, M. E., Lykawka, P. S., & Gomes, R. S. (2012).
An Oort cloud origin for the high-inclination, high-perihelion Centaurs.
mnras, 420, 3396–3402.
Chambers, J. E. (1999). A hybrid symplectic integrator that permits close
encounters between massive bodies. mnras, 304, 793–799.
Delsanti, A., Hainaut, O., Jourdeuil, E., Meech, K. J., Boehnhardt, H., &
Barrera, L. (2004). Simultaneous visible-near IR photometric study of
Kuiper Belt Object surfaces with the ESO/Very Large Telescopes. aap,
417, 1145–1158.
Di Sisto, R. P. & Brunini, A. (2007). The origin and distribution of the
Centaur population. icarus, 190, 224–235.
di Sisto, R. P., Brunini, A., & de El’?a, G. C. (2010). Dynamical evolution
of escaped plutinos, another source of Centaurs. aap, 519, A112.
Duncan, M., Quinn, T., & Tremaine, S. (1987). The formation and extent
of the solar system comet cloud. aj, 94, 1330–1338.
Duncan, M., Quinn, T., & Tremaine, S. (1988). The origin of short-period
comets. apjl, 328, L69–L73.
Duncan, M. J., Levison, H. F., & Budd, S. M. (1995). The Dynamical
Structure of the Kuiper Belt. aj, 110, 3073.
Edgeworth, K. E. (1943). The evolution of our planetary system. Journal
of the British Astronomical Association, 53, 181–188.
Fernandez, J. A. (1980). On the existence of a comet belt beyond Neptune.
mnras, 192, 481–491.
Fernandez, J. A. & Ip, W.-H. (1991). Statistical and evolutionary aspects
of cometary orbits. In R. L. Newburn, Jr., M. Neugebauer, & J. Rahe
(Eds.), IAU Colloq. 116: Comets in the post-Halley era, volume 167 of
Astrophysics and Space Science Library (pp. 487–535).
Gladman, B., Marsden, B. G., & Vanlaerhoven, C. (2008). Nomenclature
in the Outer Solar System, (pp. 43–57).
Gomes, R. S. (2003). The origin of the Kuiper Belt high-inclination pop-
ulation. icarus, 161, 404–418.
Hainaut, O. R., Boehnhardt, H., & Protopapa, S. (2012). Colours of minor
bodies in the outer solar system. II. A statistical analysis revisited. aap,
546, A115.
Havnes, O. (1970). The E?ect of Repeated Close Approaches to Jupiter
on Short-Period Comets. icarus, 12, 331–337.
Horner, J., Evans, N. W., & Bailey, M. E. (2004). Simulations of the
population of Centaurs - I. The bulk statistics. mnras, 354, 798–810.
Horner, J. & Lykawka, P. S. (2010). The Neptune Trojans - a new source
for the Centaurs? mnras, 402, 13–20.
Ip, W.-H. & Fernandez, J. A. (1991). Steady-state injection of short-period
comets from the trans-Neptunian cometary belt. icarus, 92, 185–193.
Jewitt, D. (1999). Kuiper Belt Objects. Annual Review of Earth and
Planetary Sciences, 27, 287–312.
Jewitt, D. (2009). The Active Centaurs. aj, 137, 4296–4312.
Jewitt, D. (2015). Color Systematics of Comets and Related Bodies. aj,
150, 201.
Kowal, C. T. (1989). A solar system survey. icarus, 77, 118–123.
Kuiper, G. P. (1951). On the Origin of the Solar System. Proceedings of
the National Academy of Science, 37, 1–14.
Levison, H. F. & Duncan, M. J. (1993). The gravitational sculpting of the
Kuiper belt. apjl, 406, L35–L38.
Levison, H. F. & Duncan, M. J. (1997). From the Kuiper Belt to Jupiter-
Family Comets: The Spatial Distribution of Ecliptic Comets. icarus, 127,
13–32.
Meech, K. J., Kleyna, J. T., Hainaut, O., Micheli, M., Bauer, J., Den-
neau, L., Keane, J. V., Stephens, H., Jedicke, R., Wainscoat, R., Weryk,
R., Flewelling, H., Schunov’

a-Lilly, E., Magnier, E., & Chambers, K. C.
(2017). CO-driven Activity in Comet C/2017 K2 (PANSTARRS). apjl,
849, L8.
Peixinho, N., Delsanti, A., Guilbert-Lepoutre, A., Gafeira, R., & Lacerda,
P. (2012). The bimodal colors of Centaurs and small Kuiper belt objects.
aap, 546, A86.
Peixinho, N., Lacerda, P., & Jewitt, D. (2008). Color-Inclination Relation
of the Classical Kuiper Belt Objects. aj, 136, 1837–1845.
Tegler, S. C., Bauer, J. M., Romanishin, W., & Peixinho, N. (2008). Colors
of Centaurs, (pp. 105–114).
Tegler, S. C. & Romanishin, W. (2000). Extremely red Kuiper-belt objects
in near-circular orbits beyond 40 AU. nat, 407, 979–981.
Tegler, S. C., Romanishin, W., Consolmagno, G. J., & J., S. (2016). Two
Color Populations of Kuiper Belt and Centaur Objects and the Smaller
Orbital Inclinations of Red Centaur Objects. aj, 152, 210.
Tiscareno, M. S. & Malhotra, R. (2003). The Dynamics of Known Cen-
taurs. aj, 126, 3122–3131.
Torbett, M. V. (1989). Chaotic motion in a comet disk beyond Neptune -
The delivery of short-period comets. aj, 98, 1477–1481.
Trujillo, C. A. & Brown, M. E. (2002). A Correlation between Inclination
and Color in the Classical Kuiper Belt. apjl, 566, L125–L128.
Vaghi, S. (1973). The Origin of Jupiter’s Family of Comets. aap, 24, 41.
Volk, K. & Malhotra, R. (2008). The Scattered Disk as the Source of the
Jupiter Family Comets. apj, 687, 714–725.
Volk, K. & Malhotra, R. (2013). Do Centaurs preserve their source incli-
nations? icarus, 224, 66–73.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2018-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明