博碩士論文 105229003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.145.84.47
姓名 葉庭碩(Ting-Shuo Yeh)  查詢紙本館藏   畢業系所 天文研究所
論文名稱
(Time-Series Study of Asteroid using CNEOST in Xuyi Observation Station, Purple Mountain Observatory, China)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 小行星的幾個重要的物理性質可以從光變曲線中取得,例如小行星的旋轉狀態(包含自轉週期以及自轉軸的指向等等)、形狀、內部結構和分類等等。此外,透過統計小行星的自旋狀態,我們還可以了解究竟有哪些機制會影響到小行星的自轉(例如碰撞,潮汐力和Yarkovsky–O’Keefe–Radzievskii–Paddack效應)。要對上述問題進行全面研究,便需要大量的小行星旋轉樣本。
因此,我們透過台灣及中國的兩岸交流合作計畫,與中國紫金山天文台(PMO)合作,,使用其盱眙觀測站的「中國近地天體觀測望遠鏡」(CNEOST)蒐集大量小行星的光變曲線。這次合作的主要目標是發現快速自旋小行星(SFR),以及做小行星自旋頻率分布之統計。我們總共進行了兩次的合作巡天:(a)在2017年2月27日至3月2日期間以8分鐘的間距進行約40平方度天區的巡天,以及(b)在2018年3月9日至12日期間以10分鐘的間距,進行約50平方度天區的巡天。在第一次的巡天中,我們從1650條光曲線中獲得了217個具有高可信賴度的旋轉週期,在第二次測量中,則從2872條光曲線找出了332個具有高可信賴度的旋轉週期。
這兩次的巡天所找到的小行星,幾乎全都是主帶小行星,此外我們也找到一些希爾達小行星和木星的特洛伊小行星。總共獲得了222個U=3的小行星旋轉週期,以及327個U=2的旋轉週期。在U=3的小行星中,我們發現了一個可能的超快自旋小行星,U = 2的小行星則有18個可能的目標。此外,我們發現了一個可能的雙小行星系統,(2280)Kunikov,在LCDB的資料中,(2280)Kunikov有著相對較長的旋轉週期,直徑約6.5公里。這顆小行星的光變曲線擁有類似於食雙星的特徵,例如相對較大的光變振幅,以及較尖的光變曲線。為了確定(2280)Kunikov是否真的為雙小行星系統,我們需要對其做後續的觀察。
我們針對這次位於主小行星帶中不同位置的小行星,進行了不同大小的自旋速度分佈統計。然而結果顯示,自旋率分佈與小行星的大小和位置並沒有很明顯的關係。
摘要(英) Several important physical properties of asteroid can be derived from light curve, such as rotation sense (e.g. rotation period and spin pole orientation), general shape (e.g., axis ratio estimated form light curve amplitude and shape model from light curve inversion), interior structure (i.e., the spin-rate limits of rubble-pile asteroids), and taxonomic type (e.g., phase-curve relation). Moreover, the statistics on asteroid spin rate and pole orientation are also important to understand how rotational states was affected by various mechanisms (e.g., mutual collision, tidal force and the Yarkovsky–O’Keefe–Radzievskii–Paddack effect). To have a comprehensive study on the aforementioned questions, it relies on a large sample of asteroid rotation.
Therefore, we initiated our cross-strait bilateral collaboration with the Purple Mountain Observatory (PMO) to collect asteroid light curves using the CNEOST (Chinese Near-Earth Object Survey Telescope) at Xuyi Observation Station. The main goals of this collaboration are to discover super-fast rotators (SFRs) and to carry out asteroid spin-rate distribution. Two campaigns have been conducted: (a) a survey of ~40 deg2 using 8-min cadence during February 27 – March 2 2017, and (b) a survey of ~50 deg2 using 10-min cadence during March 9 – 12 2018. We obtained 217 reliable rotation periods out of 1650 light curves in the first survey and 332 reliable rotation periods out of 2872 light curves in the second survey.
Almost all asteroids in our samples are the Main-Belt asteroids, and we detect some Hilda asteroids and Jupiter Trojans. In total, we obtained 222 rotation periods of U=3 (i.e. the quality code given by different reliability of light curve) and 327 of U=2, and among them, there are 1 SFR candidates of U=3 and 18 SFR candidates of U=2. Moreover, we found a binary candidate, asteroid (2280) Kunikov, which has a relatively long rotation period listed in the LCDB and is ~6.5 km in diameter. This asteroid shows a light curve with a large amplitude and a sharp similar to the feature of mutual eclipse. To confirm the binarity of (2280) Kunikov, we need more follow-up observations.
We carried out the spin-rate distributions of asteroids of different sizes at different locations in main belt. The result shows that there is no obvious relation between the spin-rate distribution and the size and location of asteroid.
關鍵字(中) ★ 小行星
★ 自轉週期
★ 巡天
關鍵字(英) ★ Asteroids
★ Rotation period
★ Sky survey
論文目次 Abstract i
摘要 iii
致謝 iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Small Solar System Bodies 1
1.2 Spectral Type of Asteroids 2
1.3 Time-Series Study of Asteroids 4
1.3.1 Light Curve 4
1.3.2 Spin-Rate Distribution 5
1.3.3 Super-Fast Rotator 8
Chapter 2 Observation, Data Reduction, Light-Curve Extraction, and Rotation Period Analysis 11
2.1 Observation 11
2.1.1 The China Near-Earth Object Survey Telescope (CNEOST) 11
2.1.2 Asteroid Rotation Period Surveys 11
2.2 Data Reduction 15
2.3 Light-Curve Extraction 15
2.4 Rotation Period Analysis 16
Chapter 3 Results and Discussion 18
Chapter 4 Summary 30
References 47
參考文獻 [1] Behrend, R., Bernasconi, L., Roy, R. et al. (2006). Four new binary minor planets: (854) Frostia, (1089) Tama, (1313) Berna, (4492) Debussy. Astronomy and Astrophysics, 446, 1177–1184.
[2] Bowell, E., Hapke, B., Domingue, D., et al. (1989), Asteroids II, 524
[3] Carry, B. (2012). Density of asteroids. Planetary and Space Science, 73, 98–118.
[4] Cellino, A., Hestroffer, D., Tanga, P., Mottola, S., & Dell′Oro, A. (2009), Astronomy and Astrophysics, 506, 935
[5] Chang, C.-K., Ip, W.-H., Lin, H.-W., Cheng, Y.-C., Ngeow, C.-C., Yang, T.-C., Waszczak, A., Kulkarni, S. R., Levitan, D., Sesar, B., Laher, R., Surace, J., & Prince, T. A. (2014a). 313 New Asteroid Rotation Periods from Palomar Transient Factory Observations. Astrophysical Journal, 788, 17.
[6] Chang, C.-K., Ip, W.-H., Lin, H.-W., Cheng, Y.-C., Ngeow, C.-C., Yang, T.- C., Waszczak, A., Kulkarni, S. R., Levitan, D., Sesar, B., Laher, R., Surace, J., & Prince, T. A. (2015). Asteroid Spin-rate Study Using the Intermediate Palomar Transient Factory. Astrophysical Journal Supplement Series, 219, 27.
[7] Chang, C.-K., Lin, H.-W., & Ip, W.-H. (2016a). A Quick Test on Rotation Period Clustering for the Small Members of the Koronis Family. Astrophysical Journal, 816, 71. Chang, C.-K., Lin, H.-W., Ip, W.-H., Lin, Z.-Y., Kupfer, T., Prince, T. A., Ye, Q.-Z., Laher, R. R., Lee, H.-J., & Moon, H.-K. (2017). Confirmation of Large Super-fast Rotator (144977) 2005 EC127. Astrophysical Journal Letters, 840, L22.
[8] Chang, C.-K., Lin, H.-W., Ip, W.-H., Prince, T. A., Kulkarni, S. R., Levitan, D., Laher, R., & Surace, J. (2016b). Large Super-fast Rotator Hunting Using the Intermediate Palomar Transient Factory. Astrophysical Journal Supplement Series, 227, 20.
[9] Chang, C.-K., Waszczak, A., Lin, H.-W., Ip, W.-H., Prince, T. A., Kulkarni, S. R., Laher, R., & Surace, J. (2014b). A New Large Super-fast Rotator: (335433) 2005 UW163. Astrophysical Journal Letters, 791, L35.
[10] Clark, M. (2016). Asteroid Photometry from the Preston Gott Observatory. Minor Planet Bulletin, 43, 132–135.
[11] DeMeo, F. E. & Carry, B. (2014). Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629–634.
[12] Harris, A. W. (1996). The Rotation Rates of Very Small Asteroids: Evidence for ’Rubble Pile’ Structure, volume 27 of Lunar and Planetary Science Conference.
[13] Harris, A. W.; Lagerros, J. S. V. (2002). Asteroids III, University of Arizona Press, Tucson, p.205-218
[14] Harris, A. W., Pravec, P., Galad, A., Skiff, B. A., Warner, B. D., Vilagi, J., Gajdo?, ?., Carbognani, A., Hornoch, K., Ku?nirak, P., Cooney, W. R., Gross, J., Terrell, D., Higgins, D., Bowell, E., & Koehn, B. W. (2014). On the maximum amplitude of harmonics of an asteroid lightcurve. Icarus, 235, 55–59.
[15] Harris, A. W., Young, J. W., Bowell, E., Martin, L. J., Millis, R. L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H. J., Debehogne, H., & Zeigler, K. W. (1989). Photoelectric observations of asteroids 3, 24, 60, 261, and 863. Icarus, 77, 171–186.
[16] Holsapple, K. A. (2007). Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus, 187, 500–509.
[17] Jewitt, D., Ishiguro, M., & Agarwal, J. (2013). Large Particles in Active Asteroid P/2010 A2. Astrophysical Journal Letters, 764, L5.
[18] Kaasalainen, M., Torppa, J., & Muinonen, K. (2001), Icarus, 153, 37
[19] Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. (2010). Astrometry.net: Blind Astrometric Calibration of Arbitrary Astronomical Images. Astronomical Journal, 139, 1782–1800.
[20] Linville, D., Jiang, H., Michalik, D., Wilson, S., & Ditteon, R. (2017). Lightcurve Analysis of Asteroids Observed at the Oakley Southern Sky Observatory: 2016 July - October. Minor Planet Bulletin, 44, 173–176.
[21] Masiero, J., Jedicke, R., ?urech, J., Gwyn, S., Denneau, L., & Larsen, J. (2009). The Thousand Asteroid Light Curve Survey. Icarus, 204, 145–171.
[22] McNeill, A., Fitzsimmons, A., Jedicke, R., Wainscoat, R., Denneau, L., Vere?, P., Magnier, E., Chambers, K. C., Kaiser, N., & Waters, C. (2016). Brightness variation distributions among main belt asteroids from sparse light-curve sampling with Pan-STARRS 1. , 459, 2964–2972.
[23] Pravec, P., Ku?nirak, P., ?arounova, L., Harris, A. W., Binzel, R. P., & Rivkin, A. S. (2002). Large coherent asteroid 2001 OE84, volume 500 of ESA Special Publication. Rozitis, B., Maclennan, E., & Emery, J. P. (2014). Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature, 512, 174–176.
[24] Rubincam, David Parry. (2000). Radiative Spin-up and Spin-down of Small Asteroids. Icarus, 148, 2–11.
[25] Salo, H. (1987). Numerical simulations of collisions between rotating particles. Icarus, 70, 37–51.
[26] Tedesco, E. F., Cellino, A., & Zappala, V. (2005). The Statistical Asteroid Model. I. The Main-Belt Population for Diameters Greater than 1 Kilometer. Astronomical Journal, 129, 2869–2886.
[27] Warner, B. D., Harris, A. W., & Pravec, P. (2009). The asteroid lightcurve database. Icarus, 202, 134–146.
[28] York, D. G., Adelman, J., Anderson, Jr., J. E. et al. (2000). The Sloan Digital Sky Survey: Technical Summary. Astronomical Journal, 120, 1579–1587.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明