參考文獻 |
1. Mu, T.; Rarey, J.; Gmehling, J., “Performance of COSMO-RS with sigma profiles from different model chemistries”, Ind. Eng. Chem. Res., 46 (20), 6612-6629, 2007.
2. Xiong, R. C.; Sandler, S. I.; Burnett, R. I., “An improvement to COSMO-SAC for predicting thermodynamic properties”, Ind. Eng. Chem. Res., 53 (19), 8265-8278, 2014.
3. Chen, W. L.; Hsieh, C. M.; Yang, L.; Hsu, C. C.; Lin, S. T., “A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations”, Ind. Eng. Chem. Res., 55 (34), 9312-9322, 2016.
4. 徐崇榮; 何佳靜; 王仁俊; 楊智惠; 陳智信; 黃耿祥, 「冷凍真空乾燥」, 科學發展, 70-75, 2012.
5. Jung, J.; Perrut, M., “Particle design using supercritical fluids: literature and patent survey”, J. Supercrit. Fluids, 20 (3), 179-219, 2001.
6. Perrut, M.; Clavier, J.-Y., “Supercritical fluid formulation: process choice and scale-up”, Ind. Eng. Chem. Res., 42 (25), 6375-6383, 2003.
7. Bahrami, M.; Ranjbarian, S., “Production of micro-and nano-composite particles by supercritical carbon dioxide”, J. Supercrit. Fluids, 40 (2), 263-283, 2007.
8. Ross, R. CAS Assigns the 100 Millionth CAS Registry NumberR to a Substance Designed to Treat Acute Myeloid Leukemia. 取自http://support.cas.org/news/media-releases/100-millionth-substance.
9. Marrero, J.; Gani, R., “Group-contribution based estimation of pure component properties”, Fluid Phase Equilib., 183, 183-208, 2001.
10. Joback, K. G.; Reid, R. C., “Estimation of pure-component properties from group-contributions”, Chem. Eng. Commun., 57 (1-6), 233-243, 1987.
11. Nannoolal, Y.; Rarey, J.; Ramjugernath, D., “Estimation of pure component properties. Part 2. Estimation of critical property data by group contribution”, Fluid Phase Equilib., 252 (1-2), 1-27, 2007.
12. Marrero-Morejon, J.; Pardillo-Fontdevila, E., “Estimation of pure compound properties using group-interaction contributions”, AIChE J., 45 (3), 615-621, 1999.
13. Klincewicz, K.; Reid, R., “Estimation of critical properties with group contribution methods”, AIChE J., 30 (1), 137-142, 1984.
14. Wen, X.; Qiang, Y., “A new group contribution method for estimating critical properties of organic compounds”, Ind. Eng. Chem. Res., 40 (26), 6245-6250, 2001.
15. Su, C. S., “Prediction of solubilities of solid solutes in carbon dioxide-expanded organic solvents using the predictive Soave-Redlich-Kwong (PSRK) equation of state”, Chem. Eng. Res. Des., 91 (6), 1163-1169, 2013.
16. Holderbaum, T.; Gmehling, J., “PSRK - A group contribution equation of state based on UNIFAC”, Fluid Phase Equilib., 70 (2-3), 251-265, 1991.
17. Tarjomannejad, A., “Prediction of the liquid vapor pressure using the artificial neural network-group contribution method”, Iran J. Chem. Chem. Eng.-Int. Engl. Ed., 34 (4), 97-111, 2015.
18. Peng, D.-Y.; Robinson, D. B., “A new two-constant equation of state”, Ind. Eng. Chem. Fundam., 15 (1), 59-64, 1976.
19. Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chem. Eng. Sci., 27 (6), 1197-1203, 1972.
20. Patel, N. C.; Teja, A. S., “A new cubic equation of state for fluids and fluid mixtures”, Chem. Eng. Sci., 37 (3), 463-473, 1982.
21. Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D., “Determination of critical properties and acentric factors of pure compounds using the artificial neural network group contribution algorithm”, J. Chem. Eng. Data, 56 (5), 2460-2476, 2011.
22. Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D., “Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide”, Ind. Eng. Chem. Res., 50 (1), 221-226, 2011.
23. el Hadj, A. A.; Laidi, M.; Si-Moussa, C.; Hanini, S., “Novel approach for estimating solubility of solid drugs in supercritical carbon dioxide and critical properties using direct and inverse artificial neural network (ANN)”, Neural Comput. Appl., 28 (1), 87-99, 2017.
24. Lin, S. T.; Sandler, S. I., “A priori phase equilibrium prediction from a segment contribution solvation model”, Ind. Eng. Chem. Res., 41 (5), 899-913, 2002.
25. Klamt, A., “Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena”, J. Phys. Chem., 99 (7), 2224-2235, 1995.
26. Wang, S.; Sandler, S. I.; Chen, C. C., “Refinement of COSMO-SAC and the applications”, Ind. Eng. Chem. Res., 46 (22), 7275-7288, 2007.
27. Hsieh, C. M.; Sandler, S. I.; Lin, S. T., “Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions”, Fluid Phase Equilib., 297 (1), 90-97, 2010.
28. Shimoyama, Y.; Iwai, Y., “Development of activity coefficient model based on COSMO method for prediction of solubilities of solid solutes in supercritical carbon dioxide”, J. Supercrit. Fluids, 50 (3), 210-217, 2009.
29. Sakabe, J.; Uchida, H.; Shimoyama, Y., “Mixed solid phase model using equation of state based on hole-theory for solubility prediction of pharmaceutical compound in supercritical CO2”, J. Supercrit. Fluids, 100, 26-33, 2015.
30. Ishizuka, I.; Sarashina, E.; Arai, Y.; Saito, S., “Group contribution model based on the hole theory”, J. Chem. Eng. Jpn., 13 (2), 90-97, 1980.
31. Hsieh, C. M.; Lin, S. T., “Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations”, AIChE J., 54 (8), 2174-2181, 2008.
32. Hsieh, C. M.; Lin, S. T., “First-principles predictions of vapor-liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations”, Ind. Eng. Chem. Res., 48 (6), 3197-3205, 2009.
33. Hsieh, C. M.; Lin, S. T., “Prediction of liquid-liquid equilibrium from the Peng-Robinson plus COSMOSAC equation of state”, Chem. Eng. Sci., 65 (6), 1955-1963, 2010.
34. Wang, L. H.; Hsieh, C. M.; Lin, S. T., “Improved prediction of vapor pressure for pure liquids and solids from the PR plus COSMOSAC equation of state”, Ind. Eng. Chem. Res., 54 (41), 10115-10125, 2015.
35. Te Velde, G. t.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J.; Snijders, J. G.; Ziegler, T., “Chemistry with ADF”, Journal of Computational Chemistry, 22 (9), 931-967, 2001.
36. Guerra, C. F.; Snijders, J.; te Velde, G. t.; Baerends, E., “Towards an order-N DFT method”, Theoretical Chemistry Accounts, 99 (6), 391-403, 1998.
37. Philipsen, P.; te Velde, G.; Baerends, E.; Berger, J.; de Boeij, P.; Groeneveld, J.; Kadantsev, E.; Klooster, R.; Kootstra, F.; Romaniello, P., BAND2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. 2012.
38. 陳威霖. 「運用氫鍵特性預測耦合系統之相行為」, 國立臺灣大學, 博士論文, 2017.
39. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., “Gaussian 09, revision b. 01, Gaussian”, Inc., Wallingford, CT, 6492, 2010.
40. Cerius2; Accelrys, Inc.: San Diego, CA. 1999.
41. DMol3; Accelrys, “Inc.: San Diego, CA”, 1999.
42. Lin, S. T.; Chang, J.; Wang, S.; Goddard, W. A.; Sandler, S. I., “Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model”, J. Phys. Chem. A, 108 (36), 7429-7439, 2004.
43. Mullins, E.; Oldland, R.; Liu, Y.; Wang, S.; Sandler, S. I.; Chen, C.-C.; Zwolak, M.; Seavey, K. C., “Sigma-profile database for using COSMO-based thermodynamic methods”, Ind. Eng. Chem. Res., 45 (12), 4389-4415, 2006.
44. Mullins, E.; Liu, Y.; Ghaderi, A.; Fast, S. D., “Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods”, Ind. Eng. Chem. Res., 47 (5), 1707-1725, 2008.
45. 李建億. 「探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響」, 國立中央大學, 碩士論文, 2017.
46. Wang, L. H.; Lin, S. T., “A predictive method for the solubility of drug in supercritical carbon dioxide”, J. Supercrit. Fluids, 85, 81-88, 2014. |