以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:70 、訪客IP:3.137.219.68
姓名 黃彥禎(Yen-Chen Huang) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 利用微波水熱法提升SiO2@ZnIn2S4奈米光觸媒表面均質與結晶性及其光催化產氫研究
(Improving Coverage and Crystallinity of SiO2@ZnIn2S4 Nanoparticles Using Microwave-assisted Hydrothermal Method for Photocatalytic Hydrogen Evolution)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 現代社會面臨能源以及環境危機,尋找乾淨的替代能源已為趨勢,太陽能因為取之無盡的太陽光照而具有最大的發展潛力,不過因為太陽能難以儲存,所以需要另尋方法儲存能量,其中一個儲存方式是將太陽能轉換成化學能,因此我們使用光觸媒接收太陽光能量後分解水產生氫氣的方式儲存太陽能。氫氣經過燃燒後只會產生能量以及水,是個乾淨無汙染的能源。
ZnIn2S4 (ZIS)是能隙值為2.4 eV的半導體可見光光觸媒,在太陽光的照射下會分解水產生氫氣。我們使用微波水熱法的方式合成ZIS光觸媒,之前的研究顯示如果將ZIS包覆在具有二氧化矽介電層外殼的金銀奈米粒子(GSNS@SiO2@ZIS)能夠藉由表面電漿效應有效地提升產氫效率,不過ZIS並不能均勻地包覆在GSNS@SiO2上,若能提升包覆的表面均質性與結晶性並且控制ZIS厚度,或許能夠更加理解影響產氫效率的因素。因為GSNS@SiO2合成不易,於是使用SiO2作為ZIS包覆的研究對象。
我們發現在純水溶液合成的SiO2@ZIS具有良好的結晶性,純乙醇合成的則是有較好的表面均質性,加入鹽酸控制在低pH值的情況下合成在兩種溶液中皆會提升結晶性,SiO2@ZIS的產氫效率隨著結晶性的增加而提升。乙醇與水的混和溶液結合了兩種溶液的優點,不過合成的SiO2@ZIS其性質卻難以詳細分析,雖然在不同比例混和溶液下合成不同層的ZIS能夠增加ZIS包覆SiO2的厚度,不能確實控制厚度以及只有外層ZIS參與分解水反應限制了重複包覆的實用性。最後我們在純乙醇溶液加入鹽酸合成SiO2@ZIS的方式達到提升表面均質以及結晶性的目的,並且能夠藉由改變ZIS前驅物的濃度控制ZIS的厚度。然而因為GSNS@SiO2與SiO2之間性質的差異,需要更長時間的研究才能將SiO2@ZIS相關的製程套用在GSNS@SiO2@ZIS上,不過也因如此我們對於使用複雜殼層結構光觸媒(GSNS@dielectirc@photocatalyst)優化太陽能產氫減少碳排放的目標又有了更進一步的發展。摘要(英) Our society is facing growing challenges of energy and environment. In order to find clean and renewable energy resources instead of fossil fuels, many researchers worked hard and tried to find a way to solve the problem. Among these renewable energy resources, the biggest potential to develop is solar energy due to the endless of sun irradiation. To store the solar energy is another problem. One of the solutions is converting solar energy to chemical energy. So we use water-splitting photocatlyst to produce hydrogen under sun irradiation for energy storage. Hydrogen is a clean energy resource because it only produces water and energy after combustion.
ZnIn2S4 (ZIS) is a visible-light-driven photocatalyst with the energy band gap of 2.4 eV. We developed a microwave-assisted hydrothermal method to generate ZIS particles. In particular, our studies showed that the gold-silver nanoshells with SiO2 shell(GSNS@SiO2) embedded in ZIS matrix exhibited a unique plasmonic-enhanced photocatalytic hydrogen production. However, the coverage and thickness of ZIS on top of GS-NS were not precisely controlled. If we improve the crystallinity and coverage of ZIS to control shell thickness of ZIS, we can find out the factor which could affect hydrogen production efficiency. Because GSNS@SiO2 is hard to synthesize, our research is focusing on SiO2 core instead of GSNS@SiO2.
We found that SiO2@ZIS synthesized in pure water solution has better crystallinity, though synthesized in pure ethanol solution has better coverage. Adding HCl into both water and ethanol solution to lower pH condition would increase crystallinity, better crystallinity related to better hydrogen production efficiency. SiO2@ZIS synthesized in ethanol-water mixed solution would combine the advantage of two solutions, but the properties of the samples were too complex to analyze. Though ZIS shell could get thicker by repeating coating ZIS synthesized in different ratio of ethanol-water solution, not precisely controlling ZIS shell and only outer ZIS shell participating water-splitting reaction limited the use of repeating coating method. Finally we could increase crystallinity and coverage of SiO2@ZIS by adding HCl into pure ethanol solution, ZIS shell thickness could also be controlled by different concentration of ZIS precursor. However, due to the different properties between SiO2 core and GSNS@SiO2, it takes time to study SiO2@ZIS synthesis process applied to GSNS@SiO2. Thus, our facile procedure paves the way to generate a more complex structure GS-NS@dielectric@ photocatalyst, for optimization of solar hydrogen production.關鍵字(中) ★ 奈米光觸媒
★ 產氫
★ 殼層結構
★ ZnIn2S4包覆二氧化矽關鍵字(英) ★ Nanoparticles photocatalyst
★ Hydrogen evolution
★ Core-shell structure
★ SiO2@ZnIn2S4論文目次 1 目錄
第一章、緒論 1
1-1 前言 1
1-2 光觸媒產氫 3
1-3 研究動機 5
第二章、文獻回顧 7
2-1 光觸媒分解水產氫原理 7
2-2 光觸媒材料 10
2-3 光觸媒材料的改進方式 14
2-3-1 能帶工程 14
2-3-2 產氫輔助觸媒 15
2-3-3 摻雜金屬 16
2-3-4 異質結構設計 17
2-3-5 表面電漿效應 18
2-4 ZnIn2S4光觸媒 21
2-5微波水熱法製備光觸媒 25
2-6 GSNS@SiO2@ZnIn2S4殼層結構光觸媒 27
2-7 二氧化矽奈米粒子的合成與改質 31
第三章、實驗方法 34
3-1 實驗藥品 34
3-2 分析與實驗儀器 37
3-3 實驗步驟 40
3-3-1 溶膠-凝膠法製備二氧化矽膠體以及MPS表面改質 40
3-3-2 微波水熱法合成ZnIn2S4 / SiO2@ZnIn2S4 40
3-3-3 光觸媒粉體溶液產氫速率量測 41
3-3-4 奈米殼結構合成(GSNS@SiO2 / GSNS@SnO2) 44
第四章、實驗結果與討論 48
4-1 前導 48
4-2 MPS改質二氧化矽性質 49
4-3 水溶液/乙醇溶液在pH控制下合成SiO2@ZIS 53
4-3-1 SiO2@ZIS成分分析 53
4-3-2 水溶液/乙醇溶液在pH控制下合成SiO2@ZIS-表面均質性 54
4-3-3水溶液/乙醇溶液在pH控制下合成SiO2@ZIS-結晶性 57
4-3-4水溶液/乙醇溶液在pH控制下合成SiO2@ZIS-能隙值 60
4-3-5水溶液/乙醇溶液在pH控制下合成SiO2@ZIS-產氫效率 61
4-4 乙醇與水混合溶液在pH控制下合成SiO2@ZIS 64
4-4-1乙醇與水混合溶液在pH控制下合成SiO2@ZIS-表面均質性與結晶性 64
4-4-2乙醇與水混合溶液在pH控制下合成SiO2@ZIS-能隙值 67
4-4-3乙醇與水混合溶液在pH控制下合成SiO2@ZIS-產氫效率 69
4-4-4 以不同乙醇與水混合溶液合成ZIS重複包覆SiO2 73
4-5 純乙醇加入鹽酸合成SiO2@ZIS結晶性與厚度控制 77
4-5-1鹽酸加入量對純乙醇合成SiO2@ZIS厚度與結晶性影響 78
4-5-3鹽酸加入量對純乙醇合成SiO2@ZIS能隙值影響 80
4-5-4鹽酸加入量對純乙醇合成SiO2@ZIS產氫效率影響 81
4-5-5 改變ZIS前驅物濃度控制純乙醇加鹽酸合成SiO2@ZIS厚度及其性質 82
4-6 GSNS@SiO2@ZIS套用SiO2@ZIS合成法試合成 88
第五章、結論與未來展望 94
附錄 96
低壓產氫循環系統 96
低壓產氫系統介紹 96
氫氣檢量線測定 98
產氫效率計算 100
產氫再現性 102
奈米殼結構(GSNS@SiO2, GSNS@SnO2, GSNS@porousSiO2 @SnO2, GSNS=Ag@Au)的合成 103
Gold-silver nanoshells, GSNS金銀奈米粒子合成 103
GSNS@SiO2二氧化矽外殼金銀奈米粒子合成 105
GSNS@SnO2二氧化錫外殼金銀奈米粒子合成 106
GSNS@porousSiO2@SnO2孔洞二氧化錫外殼金銀奈米粒子合成 107
參考文獻 109
圖目錄
圖1: Honda-Fujishima effect5: 3
圖2: 光觸媒照光分解水產氫與產氧原理示意圖9 7
圖3: 光觸媒照光反應示意圖9 8
圖4: 太陽光能量光譜以及假設100%光子產出時不同波段太陽光能轉換成水解反應的效率13 13
圖5: 半導體材料在電解質溶液中(pH=1)導帶價帶電位圖14 13
圖6: 藉由特定比例的前驅物合成Zn-In-S控制能隙值15 14
圖7: 輔助觸媒催化電子-電洞對分離產氫產氧示意圖16 15
圖8: CdS在Pt, PdS以及Pt-PdS輔助觸媒下的量子效率以及產氫量16 16
圖9: 不同過渡金屬摻雜於ZnIn2S4的混成軌域示意圖17 16
圖10: 光觸媒包覆奈米碳纖維殼層結構電子傳輸機制示意圖18 17
圖11: 金屬奈米粒子表面電漿共振現象21 18
圖12: FDTD模擬銀奈米粒子與不同厚度二氧化矽外殼的電磁場效應22 19
圖13: 表面電漿效應與光觸媒反應機制23 20
圖14: (a)氯化物前驅物合成的ZnIn2S4 對應其六方晶體結構 (JCPDS-03-065-2023) XRD圖(b)硝酸鹽化合物前驅物合成的ZnIn2S4 對應其立方晶體結構 (JCPDS- 00-048-1778)XRD圖 26 21
圖15: 硝酸鹽化合物前驅物合成ZnIn2S4 XRD圖 (a) pH=2.8 (b) pH=2 (c) pH=1.5 (d) pH=1 (JCPDS 65-2023: hexagonal, 48-1778: cubic)25 22
圖16: ZnIn2S4在不同pH下的產氫量25 24
圖 17: ZnIn2S4的六方晶體(hexagonal)以及立方晶體(cubic)的堆疊結構圖38 24
圖18: 左圖為微波加熱溫度分布圖,右圖為傳統加熱溫度分布圖39 26
圖19: 實驗用的微波反應器 26
圖20: 左圖為金銀奈米粒子的吸收波長隨著金厚度提升而右移的UV-vis吸收圖,右圖為不同厚度的二氧化矽影響金銀奈米粒子吸收波長的UV-vis吸收圖24 27
圖 21: GSNS@SiO2@ ZnIn2S4在不同金銀奈米粒子吸收波長與有無二氧化矽外殼下提升產氫效率圖24 28
圖22: GSNS@SiO2@ ZnIn2S4表面電漿效應與光觸媒之間轉移機制圖24 29
圖23: ZnIn2S4包覆GSNS@SiO2的TEM外觀圖24 30
圖24: 思屏學姊的研究成果,左圖為(a) ZnIn2S4 (b) SiO2核(c) SiO2@ZnIn2S4的XRD圖,右圖顯示SiO2@ZnIn2S4的TEM外觀圖 40。 30
圖25: Stober method合成的二氧化矽奈米粒子42 33
圖26: MPS嫁接於二氧化矽表面的模式45 33
圖27: 產氫系統簡易示意圖 42
圖28:氣相層析儀六向閥待測狀況,產氫系統與載體氣體各自循環 43
圖29: 氣相層析儀六向閥量測狀況,經過轉動後1 mL的待測氣體被載體氣體帶入氣相層析儀分析,大約1 mL的載體氣體會流入產氫系統中 43
圖30: MPS改質後的二氧化矽TEM圖以及DLS粒徑分析圖與不同厚度二氧化矽外殼金銀奈米粒子的平均粒徑大小表格 50
圖31: TEM外觀圖(a)未改質的二氧化矽 (b)MPS改質後的二氧化矽 50
圖32: MPS改質前後二氧化矽XPS圖 51
圖33: 二氧化矽改質前(左)後(右)ZIS在水溶液中合成TEM圖。 51
圖34: MPS結構圖 52
圖35: 二氧化矽amorphous XRD圖 52
圖36: (a)SiO2@ZIS晶格分析,存在ZIS hexagonal相d(102)晶格。(b) SiO2@ZIS line scan元素分析。 53
圖37: (a)水溶液合成SiO2@ZIS (b)pH=1水溶液合成SiO2@ZIS TEM圖 54
圖38: (a)乙醇溶液合成SiO2@ZIS (b) 100 μL鹽酸(pH=1)乙醇溶液合成SiO2@ZIS TEM圖 55
圖39: SiO2在水/乙醇環境下加入ZIS前驅物與鹽酸的FTIR圖 56
圖40: SiO2@ZIS於不同環境下合成的XRD圖 (a)水溶液 (b)水溶液pH=1 (c)乙醇溶液 (d)乙醇溶液pH=1 58
圖41: SiO2@ZIS於不同環境下合成的UV-vis吸收圖 (a)水溶液 (b)水溶液pH=1 (c)乙醇溶液 (d)乙醇溶液pH=1 61
圖42: SiO2@ZIS於純水、純水pH=1、乙醇、乙醇 pH=1溶液下合成的產氫效率圖 62
圖43: SiO2@ZIS 15E pH=1 循環產氫的穩定性 63
圖44: SiO2@ZIS乙醇-水混和溶液的UV-vis吸收圖與能隙值(1)未加鹽酸 (2)pH=2(15E為pH=1.4) (3) pH=1 68
圖45:乙醇-水混和溶液在不同pH值下合成SiO2@ZIS的產氫效率 69
圖46: d(006) 2θ位置比較圖 (1)E:H=0.5:1與pH=1 (2)15H與E:H=0.5:1 (3) E:H=2:1與pH=1 72
圖47: SiO2@ZIS-內層15E pH=1合成ZIS,外層15H合成ZIS 73
圖48: TEM圖 (a)作為內層的15E pH=1的SiO2@ZIS樣品 (b)作為外層的E:H=5:1 pH=2的SiO2@ZIS樣品 (c)重複包覆-內層ZIS為15E pH=1合成,外層ZIS為E:H=5:1 pH=2合成的SiO2@ZIS樣品 74
圖49: XRD圖(a)作為內層的15E pH=1的SiO2@ZIS樣品 (b)作為外層的E:H=5:1 pH=2的SiO2@ZIS樣品 (c)重複包覆-內層ZIS為15E pH=1合成,外層ZIS為E:H=5:1 pH=2合成的SiO2@ZIS樣品 75
圖50: 15E pH=1、E:H=5:1 pH=2以及重複包覆-內層ZIS為15E pH=1合成,外層ZIS為E:H=5:1 pH=2合成的SiO2@ZIS產氫效率圖 76
圖51: 不同鹽酸量下乙醇合成SiO2@ZIS的XRD圖 79
圖52: 不同鹽酸量下乙醇合成SiO2@ZIS的UV-vis吸收圖 80
圖53: 不同鹽酸量下乙醇合成SiO2@ZIS產氫效率與ZIS厚度圖 81
圖54: 不同ZIS前驅物濃度在加入鹽酸的乙醇溶液中合成SiO2@ZIS XRD圖 (1)15E pH=1.4 (2)15E pH=1.2 (3)15E pH=1.0 (4) pH=0.6。 84
圖55: 不同ZIS前驅物濃度在加入鹽酸的乙醇溶液中合成SiO2@ZIS UV-vis吸收圖(1)15E pH=1.4 (2)15E pH=1.2 (3)15E pH=1.0 (4) pH=0.6。 84
圖56: 不同ZIS前驅物濃度在加入鹽酸的乙醇溶液中合成SiO2@ZIS 產氫效率與厚度圖 86
圖57: 不同ZIS前驅物濃度在加入鹽酸的乙醇溶液中合成SiO2@ZIS相近厚度(27~29 nm)產氫效率比較圖 86
圖58: 不同ZIS前驅物濃度在加入鹽酸的乙醇溶液中合成SiO2@ZIS相近厚度(32~36 nm)產氫效率比較圖 87
圖59: GSNS@SiO2(10 nm) TEM圖 89
圖60: TEM圖(a) GSNS@SiO2(10 nm)@ZIS 15H (b)GSNS@SiO2(10 nm)@ZIS 15E pH=1 89
圖61: XRD繞射圖 (a)GSNS@SiO2@ZIS 15H (b)GSNS@SiO2@ZIS 15E pH=1 90
圖62: UV-vis吸收圖 (a)GSNS@SiO2@ZIS 15H (b)GSNS@SiO2@ZIS 15E pH=1 91
圖63: ZIS、SiO2@ZIS、GSNS@SiO2@ZIS 15H、GSNS@SiO2@ZIS 15E pH=1產氫效率比較圖 92
圖64: 產氫系統示意圖以及實際圖 97
圖65: 冷阱 (cold trap) 97
圖66: 氣相層析儀軟體分析氣體成分圖 98
圖67: 氫氣檢量線 x=總體氣體濃度,y=氫氣peak面積 100
圖68: 產氫再現性-SiO2@ZIS 15E pH=1相同樣品取用三次在產氫系統中做照光實驗的產氫數據 102
圖69: 銀奈米粒子SEM圖 103
圖70: 銀奈米粒子UV-vis吸收圖 103
圖71: 金銀奈米粒子SEM圖 104
圖72: 金銀奈米粒子UV-vis吸收圖-500 nm, 700 nm, 900 nm 104
圖73: 二氧化矽外殼金銀奈米粒子SEM圖 105
圖74: 二氧化矽外殼金銀奈米粒子UV-vis吸收圖-GSNS 700 nm, 900 nm 105
圖75: 二氧化錫外殼金銀奈米粒子SEM圖 106
圖76: 二氧化錫外殼金銀奈米粒子UV-vis吸收圖-GSNS 500 nm 106
圖77: 孔洞二氧化錫外殼金銀奈米粒子SEM圖 107
圖78: 孔洞二氧化錫外殼金銀奈米粒子UV-vis圖-GSNS 700 nm 107
圖79: 不同厚度孔洞二氧化錫外殼金銀奈米粒子產氫效率圖 108
?
表目錄
表1: 紫外光光觸媒產生氫氣與氧氣之產率彙整表11 11
表2: 可見光光觸媒產生氫氣與氧氣之產率彙整表12 12
表3: 硫代乙醯胺(TA)與金屬錯合物的紅外線吸收帶(cm-1) 46 56
表4: 不同乙醇-水混和溶液在pH控制下合成的SiO2@ZIS表面均質性 (E:H=0:1 / 0.5:1 /2:1 / 5:1 / 1:0, pH=N未添加鹽酸,紅色三角形為最佳樣品,紅色圓形為較佳表面均質性以及結晶性樣品) 66
表5: 不同乙醇-水混和溶液在pH控制下合成的SiO2@ZIS結晶性 (E:H=0:1 / 0.5:1 / 2:1 /5:1 / 1:0, pH=N未添加鹽酸,紅色三角形為最佳樣品,紅色圓形為較佳表面均質性以及結晶性樣品) 66
表6: ZIS在不同情況下合成的d(006)晶格資訊、產氫效率以及表觀量子產率34 (ZIS-mmol of CTAB-synthesis time) 70
表7: 添加特定鹽酸量至純乙醇SiO2@ZIS對應的大約pH值 77
表8:不同鹽酸量下乙醇合成SiO2@ZIS的TEM圖以及ZIS厚度 78
表9: 純乙醇加入不同鹽酸下合成的SiO2@ZIS d(102)晶粒大小數據 80
表10: 不同ZIS前驅物濃度在加入鹽酸的乙醇溶液中合成SiO2@ZIS TEM圖以及厚度表 83參考文獻 1. Chu, S., Y. Cui, and N. Liu, The path towards sustainable energy. Nature Materials, 2016. 16: p. 16.
2. 陳致融、劉如熹,利用奈米金屬提高水分解產氫效率。科學發展專題報導,2015. 508:p6.
3. Hydrogen Scaling Up- A sustainable pathway for the global energy transition, Hydrogen Council, November 2017..
4. Korner, A. Technology Roadmap: Hydrogen and Fuel Cells. 2015.
5. Fujishima, A., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 37: p. 238.
6. Tentu, R.D. and S. Basu, Photocatalytic water splitting for hydrogen production. Current Opinion in Electrochemistry, 2017. 5(1): p. 56-62.
7. May, M.M., et al., Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nature Communications, 2015. 6: p. 8286.
8. Hu, S., et al., An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy & Environmental Science, 2013. 6(10): p. 2984-2993.
9. Maeda, K. and K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. The Journal of Physical Chemistry C, 2007. 111(22): p. 7851-7861.
10. Tsuji, I., et al., Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. Journal of the American Chemical Society, 2004. 126(41): p. 13406-13413.
11. Kudo, A., H. Kato, and I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters, 2004. 33(12): p. 1534-1539.
12. Kudo, A., Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. International Journal of Hydrogen Energy, 2007. 32(14): p. 2673-2678.
13. Ismail, A.A. and D.W. Bahnemann, Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy Materials and Solar Cells, 2014. 128: p. 85-101.
14. Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414: p. 338.
15. Shen, S., L. Zhao, and L. Guo, ZnmIn2S3+m (m=1–5, integer): A new series of visible-light-driven photocatalysts for splitting water to hydrogen. International Journal of Hydrogen Energy, 2010. 35(19): p. 10148-10154.
16. Yang, J., et al., Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 2013. 46(8): p. 1900-1909.
17. Shen, S., et al., Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light. Journal of Power Sources, 2011. 196(23): p. 10112-10119.
18. Chen, Y., et al., Hierarchical Core–Shell Carbon Nanofiber@ZnIn2S4 Composites for Enhanced Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2014. 6(16): p. 13841-13849.
19. Kottmann, J.P., et al., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001. 64(23): p. 235402.
20. Mock, J.J., et al., Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 2002. 116(15): p. 6755-6759.
21. Kelly, K.L., et al., The Optical Properties of Metal Nanoparticles:? The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2003. 107(3): p. 668-677.
22. Jie, C., et al., Nanogap Engineered Plasmon?Enhancement in Photocatalytic Solar Hydrogen Conversion. Advanced Materials Interfaces, 2015. 2(14): p. 1500280.
23. Cushing, S.K., et al., Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society, 2012. 134(36): p. 15033-15041.
24. Li, C.-H., et al., Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold–Silver Nanoshells. ACS Applied Materials & Interfaces, 2016. 8(14): p. 9152-9161.
25. Chai, B., et al., Template-Free Hydrothermal Synthesis of ZnIn2S4 Floriated Microsphere as an Efficient Photocatalyst for H2 Production under Visible-Light Irradiation. The Journal of Physical Chemistry C, 2011. 115(13): p. 6149-6155.
26. Chen, Y., et al., Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions, 2011. 40(11): p. 2607-2613.
27. Hu, X., et al., Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process. Crystal Growth & Design, 2007. 7(12): p. 2444-2448.
28. Yu, Y., et al., Visible-light-driven ZnIn2S4/CdIn2S4 composite photocatalyst with enhanced performance for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2013. 38(3): p. 1278-1285.
29. Wei, L., et al., MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Applied Catalysis B: Environmental, 2014. 144: p. 521-527.
30. Shen, S., et al., Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4: A case study of alkaline-earth metal doping. Journal of Physics and Chemistry of Solids, 2012. 73(1): p. 79-83.
31. Li, J., et al., Photoluminescence properties of transition metal-doped Zn-In-S/ZnS core/shell quantum dots in solid films. RSC Advances, 2016. 6(50): p. 44859-44864.
32. Shen, S., et al., Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped ZnIn2S4 under Visible Light Irradiation. The Journal of Physical Chemistry C, 2008. 112(41): p. 16148-16155.
33. Li, F., et al., Hydrothermal synthesis of zinc indium sulfide microspheres with Ag+ doping for enhanced H2 production by photocatalytic water splitting under visible light. Catalysis Science & Technology, 2014. 4(4): p. 1144-1150.
34. Shen, S., L. Zhao, and L. Guo, Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2008. 33(17): p. 4501-4510.
35. Bai, X. and J. Li, Photocatalytic hydrogen generation over porous ZnIn2S4 microspheres synthesized via a CPBr-assisted hydrothermal method. Materials Research Bulletin, 2011. 46(7): p. 1028-1034.
36. Shen, S., L. Zhao, and L. Guo, Crystallite, optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Materials Research Bulletin, 2009. 44(1): p. 100-105.
37. Chen, Z., et al., Low-Temperature and Template-Free Synthesis of ZnIn2S4 Microspheres. Inorganic Chemistry, 2008. 47(21): p. 9766-9772.
38. Serrano, D.P., et al., Synthesis and crystallization mechanism of zeolite TS-2 by microwave and conventional heating. Microporous and Mesoporous Materials, 2004. 69(3): p. 197-208.
39. Zhu, Y.-J. and F. Chen, Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase. Chemical Reviews, 2014. 114(12): p. 6462-6555.
40. 劉思屏, 微波水熱法製備SiO2@ZnIn2S4奈米粒子及其光催化產氫研究, in 化學工程與材料工程學系. 2016, 國立中央大學.
41. Giesche, H., Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. Journal of the European Ceramic Society, 1994. 14(3): p. 189-204.
42. Stober, W., A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968. 26(1): p. 62-69.
43. Sapsford, K.E., et al., Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013. 113(3): p. 1904-2074.
44. Gude, K. and R. Narayanan, Synthesis and Characterization of Colloidal-Supported Metal Nanoparticles as Potential Intermediate Nanocatalysts. The Journal of Physical Chemistry C, 2010. 114(14): p. 6356-6362.
45. Wu, J., et al., Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chemical Physics Letters, 2014. 591: p. 227-232.
46. Gosavi, R.K. and C.N.R. Rao, Infrared absorption spectra of metal complexes of alkylthioureas and some related ligands. Journal of Inorganic and Nuclear Chemistry, 1967. 29(8): p. 1937-1945.
47. Shen, S., L. Zhao, and L. Guo, Morphology, structure and photocatalytic performance of ZnIn2S4 synthesized via a solvothermal/hydrothermal route in different solvents. Journal of Physics and Chemistry of Solids, 2008. 69(10): p. 2426-2432.指導教授 李岱洲(Tai-Chou Lee) 審核日期 2018-8-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare