博碩士論文 102683002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.17.74.151
姓名 徐稚婷(Chih-Ting Hsu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 全球導航衛星掩星觀測資料於電離層數值天氣預報之應用
(GNSS RO data assimilation of ionospheric numerical weather prediction)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在評估福爾摩沙衛星三號與福爾摩沙衛星七號之掩星觀測資料對於電離層數值天氣預報的影響。本研究使用系集卡曼濾波技術同化電離層-熱氣層耦合模式與福爾摩沙衛星三號及福爾摩沙衛星七號所測得之電子密度剖線與斜向全電子含量資料,以期能改善電離層資料同化系統的現報與預報能力。
首先,本研究將評估電離層與熱氣層之耦合作用對於電離層本身的現報與預報之影響。美國國家大氣研究中心所發展的資料同化開發模組將被用於同化福爾摩沙衛星三號電子密度剖現資料與熱氣層-電離層耦合環流電動模式(Thermosphere-Ionosphere-Electrodynamics General Circulation Model, TIE-GCM)。此資料同化開發模組與TIE-GCM之結合將有利於在數據同化與預報的過程中,電離層與熱氣層自洽性的耦合。觀測系統模擬實驗將被用來評估同化不同電離層與熱氣層變數對於電離層現報與預報之影響。實驗結果表明,電離層現報與預報之能力可藉由同時同化電離層與熱氣層的變數獲得改善,且中性大氣成分之影響尤為重要。
當利用福爾摩沙衛星三號與七號所測得之全球定位系統訊號反演電子濃度剖線資料時,需假設全球的電子濃度分布為球面對稱之分布。同化電子濃度剖線會同時將此假設所造成的誤差引入到數值模型中,而斜向全電子含量的資料則無此問題。故本研究的第二部分將著重在同化斜向全電子含量資料。然而TIE-GCM的上邊界高度過低,無法直接與斜向全電子含量進行同化。因此,在第二部分的實驗將使用美國大氣暨海洋總署所發展的新資料同化系統, Community Gridpoint Statistical Interpolation (GSI) Ionosphere,來取代先前的資料同化系統。此兩系統主要差異在於所使用的數值模型。在GSI Ionosphere中所使用之數值模型是由全球電離層電漿模型(Global Ionosphere Plasmasphere, GIP)與TIE-GCM所組成。此模型中,GIP沿磁力線進行電離層與電漿球層中電漿的模擬,熱氣層部分則由原本TIE-GCM中的中性大氣模組來模擬。相較於TIE-GCM,由於此模型之中低緯度封閉磁力線部分無須設定上邊界條件,且可考慮到熱氣層、電離層、與電漿球層的之間的耦合,故其應用更廣泛且彈性,可涵蓋的高度也較廣。
在第二部分的研究中,福爾摩沙衛星七號斜向全電子含量之觀測系統模擬實驗將被用來研究GSI Ionosphere在電離層現報與預報上的表現。與此同時,系集卡曼濾波器之參數對於同化福爾摩沙衛星七號斜向全電子含量之結果的影響也將被評估。本研究中主要評估的系集卡曼濾波器參數包括系集樣本大小與限地化參數。研究發現,利用GSI Ionosphere同化斜向全電子含量可大幅改善電離層中低緯度現報之結果。
在完成觀測系統模擬實驗後,真實的福衛三號斜向全電子含量資料將更進一步被同化以測試GSI Ionosphere在真實情況下對電離層現報之能力。在第三部分的研究中,我們主要關注在太陽平靜且無磁暴時期,GSI Ionosphere在電離層中底緯度的現報表現。實驗發現,GSI Ionosphere可成功同化真實的福衛三號斜向全電子含量資料並展現出優異的電離層中低緯度現報能力。我們可以預期,待未來福爾摩沙衛星七號升空並取得更多的觀測資料後,此系統的電離層現報與預報之能力將可大幅提升。
摘要(英) This dissertation evaluates the ability of the Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC) and the FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) Radio Occultation (RO) data to improve ionospheric specification and forecasting in the contest of ionospheric Numerical Weather Prediction (NWP) aided by data assimilation. For this purpose, both electron density profile and slant Total Electron Content (sTEC) data provided by the FORMOSAT-3/COSMIC and the FORMOSAT-7/COSMIC-2 missions are assimilated into a coupled first-principles model of the thermosphere and ionosphere by using ensemble square root filters. Along with evaluation of observational data, the dissertation investigates roles of incorporating ion-neutral coupling into data assimilation processes and the impact of different auxiliary ensemble data assimilation methods.
The role of ion-neutral coupling to ionospheric NWP systems is addressed first in this study. The FORMOSAT-3/COSMIC electron density profiles are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), using Ensemble Adjustment Kalman Filter (EAKF) implemented in the Data Assimilation Research Testbed (DART). Combining the EAKF and the TIE-GCM allows a self-consistent treatment of ion-neutral coupling in both analysis and forecast steps of data assimilation. Both thermospheric and ionospheric variables are updating according to the background error covariance in the EAKF, and the updated state variables further affect other state variables through the physical ion-neutral coupling processes described by the TIE-GCM in Observing System Simulation Experiments (OSSEs). By updating different combinations of thermospheric and ionospheric variables in OSSEs, the impact of coupling processes on ionospheric NWP can be assessed. It is demonstrated that the incorporation of ion-neutral coupling can significantly improve the ionospheric electron density analysis and forecast, with the thermospheric composition being the most significant state variable.
Next, in the second part of this study, RO sTEC data, instead of electron density profiles, are attempted with the goal of further enhancing the ability of the FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2 to improve ionospheric specification and forecasting by eliminating the errors in electron density profiles that are introduced by the assumption of a spherical symmetric ionospheric electron density distribution in retrieval processes. Since the upper boundary of the TIE-GCM is 500-700 km, which is too low for assimilation of GNSS RO sTEC, another data assimilation system, the Community Gridpoint Statistical Interpolation (GSI) Ionosphere is used. The GSI Ionosphere is constructed using the GSI Ensemble Square Root Filter (EnSRF) and the Global Ionosphere Plasmasphere/TIE-GCM (GIP/TIE-GCM). Because the EAKF and the EnSRF are methodologically equivalent, the major difference between the DART/TIE-GCM and the GSI Ionosphere is the first-principles models employed in these two systems. The GIP/TIE-GCM is a coupled model of the thermosphere, ionosphere, and plasmasphere, and the plasma in the GIP/TIE-GCM are simulated along geomagnetic flux tubes, allowing the model to be extended to the plasmasphere, which adds flexibility for various future applications, such as incorporating the model with observation at higher altitude or studying the role of coupling of plasmasphere and ionosphere on ionospheric NWP.
In order to make quantify assessments of capability of the GSI Ionosphere to improve the low- and mid-latitude ionospheric specification and forecasting through assimilation of GNSS RO sTEC, a number of OSSEs are carried out by using synthetic FORMOSAT-7/COSMIC-2 data. An additional question addressed with the GSI ionosphere is the comparative evaluation of the FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2 observing systems. The effect of major EnSRF parameters, including the ensemble size and covariance localization schemes, on the assimilation analysis is investigated extensively, and are optimized to yield the highest quality assimilation analysis within the parameter range explored in this dissertation. The result shows that assimilation of sTEC data from the FORMOSAT-7/COSMIC-2 mission through the use of the GSI Ionosphere could potentially improve the low- and mid-latitude ionospheric specification considerably.
In the third part of this study, for the purpose of demonstrating the ability of the GSI Ionosphere data assimilation system to improve low- and mid-latitude ionospheric monitoring and forecasting with actual data rather than synthetic data, a case study is carried out under geomagnetically quiet and low solar activity conditions with the FORMOSAT-3/COSMIC GNSS RO sTEC data. Real FORMOSAT-3/COSMIC GNSS RO sTEC data during January 01, 2013 and January 02, 2013 is assimilated into the GSI Ionosphere, and the result is compared with the Center of Orbit Determination in Europe (CODE) Global Ionosphere Maps (GIMs). Result shows that, by assimilating sTEC data into the GSI Ionosphere, the feature of the Equatorial Ionization Anomaly (EIA) in the GSI Ionosphere becomes closer to that of the CODE GIMs. However, the correction of EIA magnitude by using EnSRF still need to be addressed. Comparing with the FORMSAT-3/COSMIC, the FORMOSAT-7/COSMIC-2 will be able to provide more dens data volume in low- and mid-latitude region. As a result, this issue can be solved by incorporating the FORMOSAT-7/COSMIC-2 data into the GSI Ionosphere in the future, since the sTEC data volume will be increased considerably
關鍵字(中) ★ 全球導航衛星掩星觀測
★ 資料同化
★ 電離層太空天氣
關鍵字(英) ★ GNSS radio occulation
★ Data Assimilation
★ Ionospheric weather
論文目次 摘 要 i
Abstract iii
Acknowledgment vi
Table of Contents viii
List of Figure x
List of Table xiv
Chapter 1. Introduction - 1 -
1-1 Motivation and Objective - 1 -
1-2 Neutral atmosphere and Ionosphere - 4 -
1-3 GNSS radio occultation of the ionosphere and the COSMIC missions - 14 -
1-4 Ensemble data assimilation - 20 -
Chapter 2. Coupled Ionosphere-Thermosphere Data Assimilation for Ionospheric Specification and Forecasting - 31 -
2-1 DART/TIE-GCM data assimilation system - 32 -
2-2 Data Assimilation Experiment Design - 35 -
2-3 Experiment results - 39 -
2-4 Discussion - 48 -
2-5 Summary and Conclusion - 51 -
Chapter 3. Assessment of the Impact of GNSS RO Data on Ionospheric Specification - 55 -
3-1 GSI Ionosphere with GIP/TIE-GCM - 56 -
3-2 Data Assimilation Experiment Design - 58 -
3-3 Experiment Results - 63 -
3-4 Discussion - 79 -
3-5 Summary and Conclusions - 86 -
Chapter 4. Ionospheric Weather Revealed by Data Assimilation of FORMOSAT-3/COSMIC GNSS RO sTEC - 89 -
4-1 Experiment Design - 89 -
4-2 Result 1- OSSEs of FORMOSAT-3/COSMIC GNSS RO sTEC - 94 -
4-3 Result 2- FORMOSAT-3/COSMIC GNSS RO sTEC data assimilation - 98 -
4-4 Result 3- Comparison of FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2 Observing Systems Simulation Experiment - 111 -
4-5 Discussion - 113 -
4-6 Summary and Conclusions - 122 -
Chapter 5. Conclusions - 125 -
Reference - 129 -
參考文獻 Akmaev, R. A. (2011), Whole atmosphere modeling: Connecting terrestrial and space weather, Rev. Geophys., 49, RG4004.
Anderson, D. & Fuller-Rowell, T. (1999). The ionosphere, Space Environment Topics, NOAA: http://www.sel.noaa.gov/info/Iono.pdf, 1999.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avellano, A. (2009). The Data Assimilation Research Testbed a Community Facility. Bulletin of the American Meteorological Society, 90(9), 1283-1296.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avellano, A. (2009). The Data Assimilation Research Testbed: A Community Facility. Bulletin of the American Meteorological Society, 90(9), 1283-1296.
Anderson, J., & Lei, L. L. (2013). Empirical Localization of Observation Impact in Ensemble Kalman Filters. Monthly Weather Review, 141(11), 4140-4153.
Anderson, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12), 2884-2903.
Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts. Monthly Weather Review, 127(12), 2741-2758.
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., . . . Zeng, Z. (2008). The COSMIC/FORMOSAT-3 Mission: Early Results. Bulletin of the American Meteorological Society, 89(3), 313-334.
Bishop, C. H., Etherton, B. J., & Majumdar, S. J. (2001). Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Monthly Weather Review, 129(3), 420-436.
Burgers, G., van Leeuwen, P. J., & Evensen, G. (1998). Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126(6), 1719-1724.
Burns, A. G., T. L. Killeen, and R. G. Roble (1991), A theoretical study of thermospheric composition perturbations during an impulsive geo-magnetic storm, J. Geophys. Res., 96, 14,153–14,167.
Chartier, A. T., Jackson, D. R., & Mitchell, C. N. (2013). A comparison of the effects of initializing different thermosphere-ionosphere model fields on storm time plasma density forecasts. Journal of Geophysical Research-Space Physics, 118(11), 7329-7337.
Chartier, A. T., Matsuo, T., Anderson, J. L., Collins, N., Hoar, T. J., Lu, G., . . . Bust, G. S. (2016). Ionospheric data assimilation and forecasting during storms. Journal of Geophysical Research: Space Physics, 121(1), 764-778.
Chen, C. H., Lin, C. H., Matsuo, T., Chen, W. H., Lee, I. T., Liu, J. Y., . . . Hsu, C. T. (2016). Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions. Journal of Geophysical Research: Space Physics, 121(6), 5708-5722.
Daley, R., Atmospheric Data Analysis, Cambridge Univ. Press, New York, 1991.
Evensen, G. (1994). Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model Using Monte-Carlo Methods to Forecast Error Statistics. Journal of Geophysical Research-Oceans, 99(C5), 10143-10162.
Evensen, G. (2009). The Ensemble Kalman Filter for Combined State and Parameter Estimation Monte Carlo techniques for data assimilation in larger systems. Ieee Control Systems Magazine, 29(3), 83-104.
Forte, B., Smith, N. D., Mitchell, C. N., Da Dalt, F., Panicciari, T., Chartier, A. T., . . . Turunen, E. (2013). Comparison of temporal fluctuations in the total electron content estimates from EISCAT and GPS along the same line of sight. Annales Geophysicae, 31(4), 745-753.
Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757.
Gurvich, A.S. & Krasil’nikova, T.G. (1990). Navigation satellites for radio sensing of the Earth’s atmosphere. Soviet J. Remote Sensing, 7, 1124–1131 (Russian original published 1987).
Hajj, G. A., Wilson, B. D., Wang, C., Pi, X., & Rosen, I. G. (2004). Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter. Radio Science, 39(1).
Hamill, T. M., Whitaker, J. S., & Snyder, C. (2001). Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter. Monthly Weather Review, 129(11), 2776-2790.
Hoffman, R. N., & Atlas, R. (2015). Future Observing System Simulation Experiments. Bulletin of the American Meteorological Society, 97(9), 1601-1616.
Houtekamer, P. L., & Mitchell, H. L. (2001). A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation. Monthly Weather Review, 129(1), 123-137.
Hsu, C. T., Matsuo, T., Wang, W. B., & Liu, J. Y. (2014). Effects of inferring unobserved thermospheric and ionospheric state variables by using an Ensemble Kalman Filter on global ionospheric specification and forecasting. Journal of Geophysical Research-Space Physics, 119(11), 9256-9267.
Hsu, C.-T., Matsuo, T., Yue, X., Fang, T.-W., Fuller-Rowell, T., Ide, K. & Liu, J.-Y. (2018). Assessment of the impact of FORMOSAT-7/COSMIC-2 GNSS RO observations on midlatitude and low-latitude ionosphere specification: Observing system simulation experiments using Ensemble Square Root Filter. J. Geophys. Res. Space Physics, 123.
Jee, G., Burns, A. G., Wang, W., Solomon, S. C., Schunk, R. W., Scherliess, L., . . . Zhu, L. (2007). Duration of an ionospheric data assimilation initialization of a coupled thermosphere-ionosphere model. Space Weather, 5(1), S01004.
Jee, G., Burns, A. G., Wang, W., Solomon, S. C., Schunk, R. W., Scherliess, L., . . . Zhu, L. (2008). Driving the TING model with GAIM electron densities: Ionospheric effects on the thermosphere. Journal of Geophysical Research: Space Physics, 113(A3), A03305.
Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1), 35-45.
Kalman, R. E., & Bucy, R. S. (1961). New Results in Linear Filtering and Prediction Theory. Journal of Basic Engineering, 83(1), 95-108.
Kelley, M. C. (2009), The Earth′s ionosphere: plasma physics and electrodynamics, 2nd ed. Academic Press, , San Diego, Calif., 2009.
Kuo, Y. H., Wee, T. K., Sokolovskiy, S., Rocken, C., Schreiner, W., Hunt, D., & Anthes, R. A. (2004). Inversion and Error Estimation of GPS Radio Occultation Data. Journal of the Meteorological Society of Japan. Ser. II, 82(1B), 507-531.
Lee, I. T., Matsuo, T., Richmond, A. D., Liu, J. Y., Wang, W., Lin, C. H., . . . Chen, M. Q. (2012). Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. Journal of Geophysical Research-Space Physics, 117.
Lee, I. T. (2013), Assimilation of radio occultation data observed by FORMOSAT-3/COSMIC into a coupled Thermosphere/Ionosphere model, PhD thesis, Institute of Space Science, National Central Univ., Zhongli, Taoyuan, Taiwan.
Lee, I. T., Tsai, H. F., Liu, J. Y., Lin, C. H., Matsuo, T., & Chang, L. C. (2013). Modeling impact of FORMOSAT-7/COSMIC-2 mission on ionospheric space weather monitoring. Journal of Geophysical Research-Space Physics, 118(10), 6518-6523.
Liu, J. Y., Lin, C. Y., Lin, C. H., Tsai, H. F., Solomon, S. C., Sun, Y. Y., . . . Kuo, Y. H. (2010). Artificial plasma cave in the low-latitude ionosphere results from the radio occultation inversion of the FORMOSAT-3/COSMIC. Journal of Geophysical Research-Space Physics, 115.
Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge (1998), A global mapping technique for GPS‐derived ionospheric total electron content measurements, Radio Sci., 33(3), 565–582.
Maruyama, N., Sun, Y. Y., Richards, P. G., Middlecoff, J., Fang, T. W., Fuller-Rowell, T. J., . . . Valladares, C. E. (2016). A new source of the midlatitude ionospheric peak density structure revealed by a new Ionosphere-Plasmasphere model. Geophysical Research Letters, 43(6), 2429-2435.
Matsuo, T., & Araujo-Pradere, E. A. (2011). Role of thermosphere-ionosphere coupling in a global ionospheric specification. Radio Science, 46.
Matsuo, T., Lee, I. T., & Anderson, J. L. (2013). Thermospheric mass density specification using an ensemble Kalman filter. Journal of Geophysical Research-Space Physics, 118(3), 1339-1350.
Millward, G. H., Müller-Wodarg, I. C. F., Aylward, A. D., Fuller-Rowell, T. J., Richmond, A. D., & Moffett, R. J. (2001). An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. Journal of Geophysical Research: Space Physics, 106(A11), 24733-24744.
Pedatella, N. M., Forbes, J. M., Maute, A., Richmond, A. D., Fang, T. W., Larson, K. M., & Millward, G. (2011). Longitudinal variations in the F region ionosphere and the topside ionosphere-plasmasphere: Observations and model simulations. Journal of Geophysical Research-Space Physics, 116.
Pi, X. Q., Wang, C. M., Hajj, G. A., Rosen, G., Wilson, B. D., & Bailey, G. J. (2003). Estimation of E x B drift using a global assimilative ionospheric model: An observation system simulation experiment. Journal of Geophysical Research-Space Physics, 108(A2).
Richmond, A. D., Ridley, E. C., & Roble, R. G. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19(6), 601-604.
Rishbeth, H. (1998). How the thermospheric circulation affects the ionospheric F2-layer. Journal of Atmospheric and Solar-Terrestrial Physics, 60(14), 1385-1402.
Rishbeth, H., & Edwards, R. (1989). The isobaric F2-layer. Journal of Atmospheric and Terrestrial Physics, 51(4), 321-338.
Schaer, S. (1999). Mapping and predicting the Earth’s ionosphere using the Global Positioning System, PhD dissertation, Astron. Inst., University of Bern, Bern, Switzerland
Scherliess, L., Schunk, R. W., Sojka, J. J., Thompson, D. C., & Zhu, L. (2006). Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation. Journal of Geophysical Research: Space Physics, 111(A11), A11315.
Scherliess, L., Thompson, D. C., & Schunk, R. W. (2009). Ionospheric dynamics and drivers obtained from a physics-based data assimilation model. Radio Science, 44(1), RS0A32.
Schreiner, W. S., Sokolovskiy, S. V., Rocken, C., & Hunt, D. C. (1999). Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Science, 34(4), 949-966.
Schunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., . . . Rosen, G. (2016). Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS). Radio Science, 51(7), 1157-1165.
Schunk, R. W., Scherliess, L., Sojka, J. J., Thompson, D. C., Anderson, D. N., Codrescu, M., . . . Howe, B. M. (2004). Global Assimilation of Ionospheric Measurements (GAIM). Radio Science, 39(1).
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., & Whitaker, J. S. (2003). Ensemble Square Root Filters. Monthly Weather Review, 131(7), 1485-1490.
Wang, C. M., Hajj, G., Pi, X. Q., Rosen, I. G., & Wilson, B. (2004). Development of the Global Assimilative Ionospheric Model. Radio Science, 39(1).
Whitaker, J. S., & Hamill, T. M. (2002). Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130(7), 1913-1924.
Yue, X., Schreiner, W. S., Hunt, D. C., Rocken, C., & Kuo, Y.-H. (2011). Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather, 9(9).
Yue, X., Schreiner, W. S., Kuo, Y. H., Braun, J. J., Lin, Y. C., & Wan, W. (2014). Observing System Simulation Experiment Study on Imaging the Ionosphere by Assimilating Observations From Ground GNSS, LEO-Based Radio Occultation and Ocean Reflection, and Cross Link Ieee Transactions on Geoscience and Remote Sensing, 52(7).
Yue, X., Schreiner, W. S., Lei, J., Sokolovskiy, S. V., Rocken, C., Hunt, D. C., & Kuo, Y. H. (2010). Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Annales Geophysicae, 28(1), 217-222.
Yue, X., Schreiner, W. S., Pedatella, N., Anthes, R. A., Mannucci, A. J., Straus, P. R., & Liu, J.-Y. (2014). Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather, 12(11), 616-621.
Yunck, T. P., Lindal, G. F., & Liu, C. H. (1988, 29 Nov-2 Dec 1988). The role of GPS in precise Earth observation. Paper presented at the Position Location and Navigation Symposium, 1988. Record. Navigation into the 21st Century. IEEE PLANS ′88., IEEE.
指導教授 劉正彥 松尾朋子(Jann-Yenq Liu Tomoko Matsuo) 審核日期 2018-4-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明