參考文獻 |
Asai, A., Kiyohara, J., Takasaki, H., Narukage, N., Yokoyama, T., Masuda, S., Shimojo, M. & Nakajima, H. (2013). Temporal and spatial analyses of spectral indices of nonthermal emissions derived from hard X-rays and microwaves. The Astrophysical Journal, 763(2), 87.
Aschwanden, M. J. (1998). Deconvolution of directly precipitating and trap-precipitating electrons in solar flare hard X-rays. I. Method and tests. The Astrophysical Journal, 502(1), 455.
Aschwanden, M. J. (1999, December). Particle acceleration and kinematics in solar flares and the solar corona. In Magnetic Fields and Solar Processes (Vol. 448, p. 1015).
Aschwanden, M. J., Hudson, H., Kosugi, T., & Schwartz, R. A. (1996). Electron time-of-flight measurements during the Masuda flare, 1992 January 13. The Astrophysical Journal, 464, 985.
Bastian, T. S. (1999, December). Impulsive flares: a microwave perspective. In Proc. Nobeyama Symp (No. 479, pp. 211-222). NRO Report.
Benz, A. (1993). Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae (Boston, MA: Kluwer), 299
Brown, J. C. (1971). The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Physics, 18(3), 489-502.
Carmichael, H. U. G. H. (1964). A process for flares. NASA Special Publication, 50, 451.
Haug, E. (1997). On the use of nonrelativistic bremsstrahlung cross sections in astrophysics. Astronomy and Astrophysics, 326, 417-418.
Dulk, G. A., & Marsh, K. A. (1982). Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. The Astrophysical Journal, 259, 350-358.
Elwert, G. (1939). Verschärfte berechnung von intensität und polarisation im kontinuierlichen Röntgenspektrum1. Annalen der Physik, 426(2), 178-208.
Hirayama, T. (1974). Theoretical model of flares and prominences. Solar Physics, 34(2), 323-338.
Huang, J., & Yan, Y. (2009). Analysis of kinetic process of energetic electron during a flare on 2004 december 1. The Astrophysical Journal, 705(1), 1063.
Kawate, T., Nishizuka, N., Oi, A., Ohyama, M., & Nakajima, H. (2012). Hard X-ray and microwave emissions from solar flares with hard spectral indices. The Astrophysical Journal, 747(2), 131.
Kopp, R. A., & Pneuman, G. W. (1976). Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Physics, 50(1), 85-98.
Kundu, M. R., Nitta, N., White, S. M., Shibasaki, K., Enome, S., Sakao, T., ... & Sakurai, T. (1995). Microwave and hard X-ray observations of footpoint emission from solar flares. The Astrophysical Journal, 454, 522.
Leach, J., & Petrosian, V. (1981). Impulsive phase of solar flares. I-Characteristics of high energy electrons. The Astrophysical Journal, 251, 781-791.
Lee, J., Gary, D. E., Qiu, J., & Gallagher, P. T. (2002). Electron transport during the 1999 August 20 flare inferred from microwave and hard X-ray observations. The Astrophysical Journal, 572(1), 609.
Lin, R. P., et al. (2002). The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI). Solar Physics, 210(1-2), 3-32.
Lu, E. T., & Petrosian, V. (1990). The relative timing of microwaves and X-rays from solar flares. The Astrophysical Journal, 354, 735-744.
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y. (1994). A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature, 371(6497), 495.
McClements, K. G., & Alexander, D. (2005). Fokker-Planck modeling of asymmetric footpoint hard X-ray emission in solar flares. The Astrophysical Journal, 619(2), 1153.
McClements, K. G. (1990). The trap-plus-precipitation model of hard X-ray emission in solar flares. Astronomy and Astrophysics, 230, 213-219.
McClements, K. G. (1992). The effects of magnetic field geometry on the confinement of energetic electrons in solar flares. Astronomy and Astrophysics, 253, 261-268.
Minoshima, T., & Yokoyama, T. (2008). Numerical Study of a Propagating Nonthermal Microwave Feature in a Solar Flare Loop. The Astrophysical Journal, 686(1), 701.
Nakajima, H., Sekiguchi, H., Sawa, M., Kai, K., & Kawashima, S. (1985). The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publications of the Astronomical Society of Japan, 37, 163-170.
Nakajima, H., et al. (1994). The Nobeyama radioheliograph. Proceedings of the IEEE, 82(5), 705-713.
Petrosian, V. (1981). Synchrotron emissivity from mildly relativistic particles. The Astrophysical Journal, 251, 727-738.
Ramaty, R. (1969). Gyrosynchrotron emission and absorption in a magnetoactive plasma. The Astrophysical Journal, 158, 753.
Roache, P. J. Computational Fluid Dynamics. Hermosa, Albuquerque, 1972
Schmidt, G. (1979). Physics of High Temperature Plasmas Academic. New York, 146.
Silva, A. V., Wang, H., & Gary, D. E. (2000). Correlation of microwave and hard X-ray spectral parameters. The Astrophysical Journal, 545(2), 1116.
Spitzer, L. (1967). The Physics of Fully Ionized Gases (2d ed.; New York:
Interscience)
Sturrock, P. A. (1966). Model of the high-energy phase of solar flares. Nature, 211(5050), 695.
Trottet, G., Vilmer, N., Barat, C., Benz, A., Magun, A., Kuznetsov, A., Sunyaev, R. & Terekhov, O. (1998). A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare. Astronomy and Astrophysics, 334, 1099-1111.
Trubnikov, B. A. (1965). Particle interactions in a fully ionized plasma. Reviews of plasma physics, 1, 105.
White, S. M., & Kundu, M. R. (1992). Solar observations with a millimeter-wavelength array. Solar Physics, 141(2), 347-369.
White, S. M., et al. (2011). The relationship between solar radio and hard X-ray emission. Space science reviews, 159(1-4), 225. |