博碩士論文 105223034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.17.175.239
姓名 陳佑軒(You-Xuan Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成應用於染料敏化太陽能電池之藍色有機染料
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSCs)若使用不同顏色之染料為敏化劑,元件可呈現不同顏色,具多色彩性。染料吸附在TiO2時,須吸收藍光的互補光–橘光(590 nm ~ 620 nm),且在藍光(450 nm ~ 495 nm)的吸收很弱,元件才能呈現深藍色。本實驗室先前合成以Benzothienoisoindigo (BTI)單元為輔助拉電子基的BTI-17,在DMSO中雖呈現藍色,但吸附在TiO2時呈現紅色,因最大吸收波長藍位移至綠光區域,且在藍光區域的吸收很強。本研究改以Indoline為推電子基,或將π-bridge由Benzene改為Furan,或以Indigo衍生物–diindolo[3,2,1-de:3′,2′,1′-ij][1,5]naphthyridine-6,13-dione (IND)為輔助拉電子基,合成BTI-19、BTI-21、INDT-1及INDT-2四個有機染料。在DMSO中,BTI-19、BTI-21呈現綠色,INDT-2呈現藍綠色,INDT-1呈現藍色。吸附在TiO2時,染料的最大吸收波長皆有大幅度的藍位移,因固著官能基去質子化所造成,且藍位移程度隨推電子基的推電子能力提高而增加。其中BTI-19、BTI-21分別因推電子基之推電子能力的強度增強或分子的平面性增加,成功使染料吸附在TiO2時的最大吸收波長在橘光區域,但對於紅光的吸收亦強、並在綠光區域吸收較弱,故呈現綠色。而含最強推電子基的BTI-19,有較好的前置軌域能階分布,並且LUMO能階與TiO2傳導帶能階間也有足夠的位能差,受光激發的電子有機會順利注入至TiO2的傳導帶。INDT-1及INDT-2吸附在TiO2時雖呈現藍紫色,但不同於BTI系列染料,其在藍光區域的吸收很弱,有機會經由分子的修飾,讓其吸附在TiO2上時呈現藍色。
摘要(英) The color of a Dye-sensitized Solar Cell (DSC) depends on the color of the sensitizer. To fabricate DSC exhibit blue color, the dye adsorbed on TiO2 should show blue color. In other words, dye adsorbed on TiO2 must absorb the orange light (590 nm ~ 620 nm, complementary color of blue light) and the absorption in blue light range (450 nm ~ 495 nm) should be weak. BTI-17, which was synthesized previously by our group containing the Benzothioneisoindigo (BTI) unit as an auxiliary acceptor moiety, is blue color in DMSO but turns red when adsorbed on TiO2, due to the λmax blue-shifted to the green region (554 nm) and the absorption in the blue region is strong. In this research, Indoline was used as donor unit, or Benzene was replaced by Furan to be the π-bridge, or using the Indigo derivative: diindolo[3,2,1-de:3′,2′,1′-ij][1,5]naphthyridine-6,13-dione (IND) as an auxiliary acceptor unit, resulting in BTI-19, BTI-21, INDT-1 and INDT-2 four new organic dyes, to modify the structure of BTI-17. In DMSO, BTI-19 and BTI-21 were green, INDT-2 was blue-green, INDT-1 was blue. When the dyes adsorbed on TiO2, the λmax of all four dyes has a large blue-shift, which is caused by the deprotonation of the anchoring group of the dye molecule. The degree of the blue-shift increases with the increasing in the electron-donating ability of the donor. Among them, BTI-19 and BTI-21 with stronger electron-donating ability of the donor or higher planarity of the molecule, the λmax of the dye adsorbed on TiO2 is in the orange region. Nevertheless, it also absorbs the red light and the absorption in the green region is weak but strong im blue region, therefore displays green color. The BTI-19 dye with the strongest donor has a proper frontier-orbital distribution, and the LUMO energy level is high enough to assure the electron injetction to TiO2 conduction band edge could be a good organic dye for DSC. INDT-1 and INDT-2 although are blue-purple color when adsorbed on TiO2, however their absorption in the blue region is weak, providing a chance to modify the strudture to present blue color when adsorbed on TiO2.
關鍵字(中) ★ 染料敏化太陽能電池
★ 藍色
★ 有機染料
關鍵字(英) ★ dye-sensitized solar cells
★ blue color
★ organic dye
★ benzothienoisoindigo
★ diindolo[3,2,1-de:3′,2′,1′-ij][1,5]naphthyridine-6,13-dione
論文目次 中文摘要 I
英文摘要 II
摘要圖 IV
謝誌 V
目錄 VI
圖目錄 XI
表目錄 XVI
壹、 序論 1
1-1、 前言 1
1-2、 太陽能電池的種類 1
1-3、 染料敏化太陽能電池(Dye-Sensitized Solar Cells,DSCs)簡介 ………………………………………………………….2
1-4、 光電轉換效率(η)的量測 3
1-4-1 標準太陽光 3
1-4-2、光電轉換效率(η) 4
1-4-3、外部量子產率(External Quantum Efficiency, EQE) 5
1-5、 用於染料敏化太陽能電池中之染料的特性 6
1-5-1、無機錯合物染料 7
1-5-2 紫質染料 9
1-5-1 有機染料 9
1-6、 染料之顏色 11
1-6-1、染料敏化太陽能電池的色彩 11
1-6-2、色彩學 12
1-7、 應用於DSC之藍色染料 13
1-7-1、以Diketopyrrolopyrrole (DPP)為Aa單元的D-Aa-π-A藍色有機染料 13
1-7-2、以Polycyclic Aromatic Hydrocarbon (PAH)為Aa單元的D-Aa-π-A藍色有機染 15
1-8、 應用於太陽能電池之含Isoindigo單元的分子 17
1-9、 應用於太陽能電池之含Benzothienoisoindigo (BTI)單元的分子 ……………………………………………………….19
1-9-1、本實驗室先前所合成以Benzothienoisoindigo (BTI)為Aa單元的D-Aa-π-A有機染料 20
1-10、 推電子基的推電子能力增強使最大吸收波長紅位移並提高LUMO能階 25
1-11、 分子的平面性增加使染料最大吸收波長紅位移 26
1-12、 應用於太陽能電池之含INDT單元的分子 28
1-13、 研究動機 29
貳、 實驗部分 31
2-1、 實驗藥品 31
2-2、 儀器分析與樣品製備 33
2-2-1、聚焦微波化學反應系統(CEM) 33
2-2-2、核磁共振光譜儀(Nuclear Magnetic Resonance) 33
2-2-3、紫外光/可見光吸收光譜儀(UV/Vis Spectrometer) 34

2-3、 產物與中間產物之結構與簡稱 37
2-4、 實驗步驟 45
2-4-1、Indoline-MePh-Tin的合成,如圖 2.1所示 45
2-4-2、Carbazole-Et-B的合成,如圖 2.2所示 47
2-4-3、BTI-2R-Br的合成,如圖 2.3所示 49
2-4-4、BTI-19的合成,如圖 2.4所示 51
2-4-5、BTI-21的合成,如圖 2.5所示 54
2-4-6、INDT的合成,如圖 2.6所示 57
2-4-7、INDT-1及INDT-2的合成,如圖 2.7所示 60
參、 結果與討論 64
3-1、 染料之光學性質探討 64
3-1-1、BTI-19、BTI-21、INDT-1、INDT-2在DMSO中的UV-Vis吸收光譜 64
3-1-2、BTI-19與本實驗室先前所合成的BTI-1、BTI-3、BTI-5、BTI-15、BTI-17在DMSO中的UV-Vis吸收光譜比較 66
3-1-3、BTI-21與本實驗室先前所合成的BTI-3及INDT-2與INDT-1在DMSO中的UV-Vis吸收光譜比較 67
3-1-4、INDT-1與本實驗室先前所合成的BTI-17在DMSO中的UV-Vis吸收光譜比較 68
3-1-5、BTI-19、BTI-21、INDT-1、INDT-2吸附於TiO2上的UV-Vis吸收光譜 69
3-1-6、BTI-19與本實驗室先前所合成的BTI-1、BTI-3、BTI-5、BTI-15、BTI-17吸附於TiO2上的UV-Vis吸收光譜比較 73
3-1-7、BTI-21與本實驗室先前所合成的BTI-3及INDT-2與INDT-1吸附於TiO2上的UV-Vis吸收光譜比較 74
3-1-8、INDT-1與本實驗室先前所合成的BTI-17吸附於TiO2上的UV-Vis吸收光譜比較 75
3-1-9、染料溶液含不同濃度之共吸附劑CDCA時BTI-19以及INDT-1吸附於TiO2上的UV-Vis吸收光譜 77
3-2、 染料之前置軌域能階 80
3-2-1、BTI-1、BTI-3、INDT-5、INDT-15、INDT-17的方波伏安圖及前置軌域能階計算 80
3-2-2、BTI-19與本實驗室先前所合成的BTI-1的前置軌域能階比較 ……………………………………………..83
3-2-3、BTI-21與本實驗室先前所合成的BTI-3以及INDT-2與INDT-1的前置軌域能階比較 85
3-2-4、INDT-1與本實驗室先前所合成的BTI-17的前置軌域能階比較 …………………………………………87
3-3、 染料的前置軌域分布 88
肆、 結論 90
伍、 參考文獻 91
附錄 96
附錄1、染料吸附於TiO2膜的製備 96
附錄2、UV-Vis吸收光譜圖與螢光光譜圖之疊圖 97
附錄3、1H-NMR圖譜 98
附錄4、質譜 114
附錄5、元素分析 120
附錄6、循環及方波伏安測量 120
附錄7、染料溶液添加不同當量NEt3(aq)時吸收光譜的變化 123
附錄8、BTI系列染料結構及前置軌域能階整理 124
參考文獻 [1] J. Poto?nik, “Renewable Energy Sources and the Realities of Setting an Energy Agenda”, Science 2007, 315, 810-811.
[2] R. F. Service, “Solar Report Sets the Agenda”, Science 2005, 309, 549.
[3] https://www.nrel.gov/pv/assets/images/efficiency-chart.png, Febuary 20th, 2018.
[4] B. O′Regand, M. Gratzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 films”, Nature 1991, 353, 737-740.
[5] M. Gratzel, “Photoelectrochemical Cells”, Nature 2001, 414, 338-344.
[6] R. V. M. Otakwa, J. Simiyu, S. M. Waita, J. M. Mwabora, “Application of Dye-Sensitized Solar Cell Technology in the Tropics: Effects of Air Mass on Device Performance”, International Journal of Renewable Energy Research 2012, 2, 369-375.
[7] http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html, August 16th, 2017.
[8] http://www.otichina.com/renewable-energy/photovoltaic-array-solar-panel.htm, August 16th, 2017.
[9] L. Zhang, J. M. Cole, “Anchoring Groups for Dye-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces 2015, 7, 3427-3455.
[10] M. K.Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, “Conversion of Light to Electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) Ruthen-ium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc. 1993, 115, 6382-6390.
[11] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc. 2001, 123, 1613-1624.
[12] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, M. Gratzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers”, Nat. Chem. 2014, 6, 242-247.
[13] Y. Wu, W. Zhu, “Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances”, Chem. Soc. Rev. 2013, 42, 2039-2058.
[14] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawab, M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun. 2015, 51, 15894-15897.
[15] https://www.energie-experten.ch/de/wohnen/wohnen/farbigkeit-in-der-solartechnik.html, August 16th, 2017.
[16] https://en.wikipedia.org/wiki/Visible_spectrum, August 13th, 2017.
[17] J.-H. Yum, T. W. Holcombe, Y. Kim, K. Rakstys, T. Moehl, J. Teuscher; J. H. Delcamp; M. K. Nazeeruddin; M. Gra?tzel, “Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore”, Sci. Rep. 2013, 3, 2446-2453.
[18] Y. Ren; D. Sun; Y. Cao; H.N. Tsao; Y. Yuan; S. M. Zakeeruddin; P. Wang and M. Gra?tzel “A Stable Blue Photosensitizer for Color Palette of Dye-Sensitized Solar Cells Reaching 12.6% Efficiency” J. Am. Chem. Soc. 2018, 140, 2405-2408.
[19] T. Maugarda, E. Enauda, P. Choisyb, M. D. Legoy, “Identification of an indigo precursor from leaves of Isatis tinctoria (Woad)”, Phytochemistry 2001, 58, 897-904.
[20] J. Mei, K. R. Graham, R. Stalder, J. R. Reynolds, “Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells”, Org. Lett. 2010, 12, 660-663.
[21] S.G. Li, K.J. Jiang, J.H. Huang, L.M. Yang, Y.L. Song, “Molecular engineering of panchromatic isoindigo sensitizers for dye-sensitized solar cell applications”, Chem. Commun. 2014, 50, 4309-4311.
[22] M. Karakawa, Y. Aso, “Narrow-optical-gap π-conjugated small molecules based on terminal isoindigo and thienoisoindigo acceptor units for photovoltaic application”, RSC Adv. 2013, 3, 16259-16263.
[23] 陳映維,「尋找染料敏化太陽能電池用之藍色染料」,國立中央大學,碩士論文,2016。
[24] 徐子閎,「尋找應用於染料敏化太陽能電池之藍色染料」,國立中央大學,碩士論文,2017。
[25] T.-D. Nguyen, Y.-B. Lan, C.-G. Wu ”High-Efficiency Cyclo- ruthenated Sensitizers for Dye-Sensitized Solar Cells” Inorg. Chem. 2018, 57, 1527-1534.
[26] B. Liu, W. H. Zhu, Q. Zhang, W. J. Wu, M. Xu, Z. J. Ning, Y. S. Xie, H. Tian “Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells: tuning photovoltaic performance by structural modification of donor group in donor–p–acceptor system” Chem. Commun. 2009, 1766-1768
[27] W.H. Zhu, Y.Z. Wu, S.T. Wang, W.Q. Li, Xin Li, J. Chen, Z.S. Wang; H. Tian “Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response” Adv. Funct. Mater. 2011, 21, 756?763
[28] J.X. He; F.L. Guo; X. Li; W.J. Wu; J.B. Yang and J.L. Hua “New Bithiazole-Based Sensitizers for Efficient and Stable Dye-Sensitized Solar Cells” Chem. Eur. J. 2012, 18(25), 7903-7915
[29] M. A. Kolaczkowski; B. He and Y. Liu “Stepwise Bay Annulation of Indigo for the Synthesis of Desymmetrized Electron Acceptors and Donor?Acceptor Constructs” Org. Lett. 2016, 18, 5224?5227
[30] B. He, A. B. Pun, D. Zherebetskyy, Y. Liu, F. Liu, L. M. Klivansky, A. M. McGough, B. A. Zhang, K. Lo, T. P. Russell, L.W. Wang, and Y. Liu “New Form of an Old Natural Dye: Bay-Annulated Indigo (BAI) as an Excellent Electron Accepting Unit for High Performance Organic Semiconductors” J. Am. Chem. Soc. 2014, 136, 15093?15101.
[31] B. L. Hayes “Recent Advances in Microwave Assisted Synthesis.” Aldricchem. Aceta. 2004, 17, 65-76
[32] S. Crouch, D. Skoog, F. Holler, “Principles of Instrumental Analysis”, 2006, 6th edition
[33] 魏伸紘,「以電化學法檢測人類乳突病毒序列之研究」,國立交通大學,碩士論文,2004。
[34] http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles, August 13th, 2017.
[35] V. V. Pavlishchuk, A. W. Addison, “Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C” Inorganica Chim Acta 2000, 298, 97-102.
[36] F. C. Spano1, C. Silva, “H- and J-Aggregate Behavior in Polymeric Semiconductors”, Annu. Rev. Phys. Chem. 2014, 65, 477-500.
[37] H. Dong, M. Liang, C. Zhang, Y. Wu, Z. Sun, S. Xue, “Twisted Fused-Ring Thiophene Organic Dye-Sensitized Solar Cells”, J. Phys. Chem. C 2016, 120, 22822-22830.
[38] S. Feldt, “Alternative Redox Couples for Dye-Sensitized Solar Cells”, Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1017, 2013, ISBN 978-91-554-8595-5.
[39] R. Stalder, D. Xie, A. Islam, L. Han, J. R. Reynolds, K. S. Schanze, "Panchromatic Donor?Acceptor?Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications", ACS Appl. Mater. Interfaces 2014, 6, 8715-8722.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明