博碩士論文 105223067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:111 、訪客IP:3.22.248.177
姓名 傅詠聖(Yung-Sheng Fu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 透過修飾3D鈣鈦礦膜表面製備2D鈣鈦礦薄膜提升反式鈣鈦礦太陽能電池的長時間穩定性
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的進步與文明的發展,人類對能源的需求量與日俱增,因此能源議題越來越重要。鈣鈦礦太陽能電池(Perovskite Solar Cell,簡稱PSC,光電轉換效率最高達23.3%)的主要吸光層(Perovskite膜)合成方法簡單,因此有低的製作成本且效率與矽晶圓太陽能電池差不多。但由於PSC中的鈣鈦礦膜(Psk)易與水作用而分解,使得所組裝的元件在大氣下不穩定,因此提高鈣鈦礦太陽能電池的長時間穩定性為近幾年的研究重點之一。本研究透過使用具有較長碳鏈的分子,如:Butyl ammonium iodide (BAI)、Ammonium valeric acid iodide (AVAI)、Phenethylammonium iodide (PEAI),分別溶於異丙醇(IPA)中作為表面修飾劑,利用在3D鈣鈦礦膜(CH3NH3PbI3)表面上形成較疏水的2D鈣鈦礦薄膜去修飾鈣鈦礦膜,提高元件在大氣下的長時間穩定性,實驗結果顯示以PEAI做表面修飾後的鈣鈦礦膜(PPsk)所組裝的元件有最佳的長時間穩定性與最大的光電轉換效率(達13.18%),使用PPsk的元件在未封裝下放置於相對溼度約45%的環境中48天後仍有7.26% (最高效率的55%)的光電轉換效率。
摘要(英) The issue of energy sources becomes more and more vital since the mankind have more demand in energy than ever. The active layer (perovskite film, Psk) of Perovskite Solar Cell (PSC) with the conversion efficiency up to 23.3%, close to that of and Silicon based solar cell) is easy to prepare. Therefore, PSC has a lower production cost, can be a non-expensive green energy source. Nevertheless, Psk was demaged easily by water, making PSC unstable under the ambient atmosphere. Consequently, improving the long-term stability of PSC is one of the hot research topic in recent years. Here we used molecules with longer Alkyl chain, such as Butyl ammonium iodide (BAI), Ammonium valeric acid iodide (AVAI) and Phenethylammonium iodide (PEAI) as the Psk surface-treatment (passivation) agents by forming a hydrophobic 2D perovskite thin film on the surface of the 3D perovskite (CH3NH3PbI3) to form a 2D/3D perovskite (PPsk). PSC based on PPsk active layer has higher long-term stability under the ambient atmosphere compared to that based on Psk. Cell based on PEAI passivated Psk has the longest long-term stability and highest efficiency (up to 13.18%). The unencapsulated device have an efficiency of 7.26% (ca. 55% of the highest efficiency) after sitting in the environment with ca. 45% relative humidity for 48 dayswhile the efficiency of cell based on Psk is lost totally.
關鍵字(中) ★ 反式鈣鈦礦太陽能電池
★ 鈍化
★ 表面修飾
★ 2D鈣鈦礦
★ 3D鈣鈦礦膜
★ 長時間穩定性
關鍵字(英) ★ Inverted Perovskite Solar Cell
★ Passivation
★ surface-treatment
★ 2D perovskite
★ 3D perovskite
★ long-term stability
論文目次 目錄
摘要 I
Abstract II
Graphical Abstract III
謝誌 IV
目錄 V
圖目錄 IX
表目錄 XV
第一章、緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 4
1-2-1. 鈣鈦礦太陽能電池的架構 4
1-2-2. 反式鈣鈦礦太陽能電池的工作原理 5
1-2-3. 鈣鈦礦太陽能電池的光電轉換效率 6
1-3、 鈣鈦礦太陽能電池之研究歷程 9
1-3-1. 第一個將鈣鈦礦材料應用於太陽能電池的研究 9
1-3-2. 將固態電解質應用於鈣鈦礦太陽能電池 12
1-3-3. 第一個反式結構鈣鈦礦太陽能電池的研究 14
1-4、 鈣鈦礦活性層的製備方法 15
1-4-1. 以一步驟合成法製備鈣鈦礦活性層 15
1-4-2. 以兩步驟合成法製備鈣鈦礦活性層 16
1-4-3. 一步驟反溶劑處理法製備鈣鈦礦活性層 18
1-5、 2D鈣鈦礦 20
1-5-1. 3D鈣鈦礦易與水作用 20
1-5-2. 以較長碳鏈之胺碘合成較疏水的2D鈣鈦礦膜 21
1-6、 以形成2D鈣鈦礦薄膜來鈍化3D鈣鈦礦膜之研究 27
1-6-1. 鈣鈦礦膜表面處理能提升所組裝元件的光電轉換效率 27
1-6-2. 2D鈣鈦礦膜較疏水可減緩2D/3D鈣鈦礦膜的分解 30
1-6-3. 經2D處理之3D鈣鈦礦膜所組裝之元件有小的遲滯現象 31
1-7、 表面後處理之研究 34
1-8、 研究動機 38
第二章、實驗方法 39
2-1、 實驗藥品與儀器 39
2-1-1. 藥品 39
2-1-2. 儀器設備 40
2-2、 甲基銨碘(CH3NH3I)的合成 40
2-3、 反式鈣鈦礦太陽能電池組裝步驟 41
2-3-1. 藥品配製 41
2-3-2. 元件組裝步驟 (如圖2-3-2所示) 42
2-4、 儀器分析及樣品製備 46
2-4-1. 太陽光模擬器及光電轉換效率量測 (Solar Simulator, KXL-500F) 46
2-4-2. 掃描式電子顯微鏡 (Scanning Electron Microscope, Hitachi S-800) 47
2-4-3. X-ray 繞射光譜儀 (X-Ray Diffractometer, BRUKER D8 Discover ) 48
2-4-4. 熱蒸鍍系統(Thermal evaporation system) 49
2-4-5. 太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficiency (IPCE), PVCS-I) 49
2-4-6. 光激發螢光光譜儀(Photoluminescence Spectrometer) 50
第三章、結果與討論 52
3-1、 篩選適合應用於表面處理之之胺碘分子 52
3-1-1. 將BAI、AVAI、PEAI 0.1 wt%溶於IPA來修飾3D鈣鈦礦膜表面 52
3-2、 以PEAI為表面修飾劑的條件優化 55
3-2-1. PEAI之濃度優化 55
3-3、 鈣鈦礦膜經PEAI表面修飾後所組裝之元件效率及穩定性增加的原因 58
3-3-1. UV-vis吸收光譜 58
3-3-2. 鈣鈦礦膜的螢光光譜圖(PL) 60
3-3-3. 鈣鈦礦膜的表面形貌(SEM) 63
3-3-4. Psk與PPsk的X-光繞射圖(XRD) 66
3-3-5. Psk與PPsk的前置軌域能階(由AC-2測得) 75
3-4、 由PPSK所組裝之元件的穩定性量測 78
3-4-1. 元件在不同掃描速度及掃瞄方向所測得的光伏參數 78
3-4-2. Psk及PPsk所組裝之元件之長時間IPCE值的變化 80
3-4-3. 元件的長時間穩定性 82
3-4-4. 由Psk及PPsk所組裝之元件的再現性 84
第四章、結論 87
附錄 89
附錄1調整前驅溶液中PBI2:MAI之莫耳比 89
附錄2 UV-VIS反射光譜圖 90
參考文獻 91
參考文獻 [1] https://www.materialsnet.com.tw/DocView.aspx?id=25413 (2017 年 8 月 5日)
[2] http://en.wikipedia.org/wiki/Gustav_Rose (2017 年 8 月 11 日)
[3] Da-Xing Yuan, Adam Gorka, Mei-Feng Xu, Zhao-Kui Wang and Liang-Sheng Liao, “Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing“, Phys. Chem. Chem. Phys., 2015, 17, 19745-19750
[4] Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, Tae-Youl Yang, Yong Guk Lee, Geunjin Kim, Hee-Won Shin, Sang Il Seok , Jaemin Lee and Jangwon Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells”, Nature energy, 2018, DOI: 10.1038/s41560-018-0200-6
[5] Jingjing Zhao, Xiaopeng Zheng, Yehao Deng, Tao Li, Yuchuan Shao, Alexei Gruverman, Jeffrey Shield and Jinsong Huang “Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?”, Energy Environ. Sci., 2016, 9, 3650-3656
[6] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519–522
[7] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., “Dye-Sensitized Solar Cells”, Chem. Rev. 2010, 110, 6595-6663.
[8] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc. 2009, 131, 6050-6051.
[9] Kim, H, S.; Lee, C, R.; Im, J, H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Baker, R. H.; Yum, J. H.; Moser, J. E.; Gra‥tzel, M.; Park, N.-G., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Sci. Rep. 2012, 2, 591-597.
[10] Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., “CH3NH3PbI3 Perovskite/Fullerene Planar- Hetero- junction Hybrid Solar Cell”, Adv. Mater, 2013, 25, 3727–3732.
[11] Chiang, C.-H.; Lin, J.-W.; Wu, C.-G., “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[12] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin M. K.; Gratzel, M., “Sequential deposition as a route to high performance perovskite sensitized solar cell”, Nature, 2013, 499, 316–319.
[13] Chiang, C.-H.; Tseng, Z. –L.; Wu, C.-G., “Planar Heterojunction Perovskite/ PC71BM Solar Cells with Efficiency Over 16% via (2/1)-step Spin-Coating Process”, J. Mater. Chem. A 2014, 2 15897 – 15903.
[14] Chiang, C.-H.; Nazeeruddin, M.-K.; Gratzel, M.; Wu, C.-G., “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
[15] Jeon, N.- J.; Noh, J.- H.; Kim, Y.- C.; Yang, W.- S.; Ryu, S.; Seok, S, Il., “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nature Materials, 2014, 13, 897-903.
[16] Chiang, C.-H.; Wu, C.-G., “Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells”, ChemSusChem, 2016, 9, 2666 –2672.
[17] Tomas Leijtens, Giles E. Eperon, Nakita K. Noel, Severin N. Habisreutinger, Annamaria Petrozza and Henry J. Snaith, “Stability of Metal Halide Perovskite Solar Cells”, Adv. Energy Mater., 2015, 5, 1500963
[18] Gill Sang Han, Jin Sun Yoo, Fangda Yu, Matthew Lawrence Duff, Bong Kyun Kangb and Jung-Kun Lee, “Highly stable perovskite solar cells in humid and hot environment”, J. Mater. Chem. A, 2017, 5, 14733–14740
[19] Jeffrey A. Christians, Pierre A. Miranda Herrera and Prashant V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air”, J. Am. Chem. Soc., 2015, 137, 1530?1538
[20] Constantinos C. Stoumpos, Christos D. Malliakas, and Mercouri G. Kanatzidis, “Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties”, Inorg. Chem., 2013, 52, 9019?9038
[21] Ke-zhao Du, Qing Tu, Xu Zhang, Qiwei Han, Jie Liu, Stefan Zauscher and David B. Mitzi, “Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity”, Inorg. Chem. 2017, 56, 9291?9302
[22] Mingjian Yuan, Li Na Quan, Riccardo Comin, GrantWalters, Randy Sabatini, Oleksandr Voznyy, Sjoerd Hoogland, Yongbiao Zhao, Eric M. Beauregard, Pongsakorn Kanjanaboos, Zhenghong Lu, Dong Ha Kim and Edward H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes”, Nature Nanotechnology, 2016, 11, 872-877
[23] Ian C. Smith, Eric T. Hoke, Diego Solis-Ibarra, Michael D. McGehee, and Hemamala I. Karunadasa, “A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability”, Angew. Chem., 2014, 126, 11414 –11417
[24] Hsinhan Tsai1, Wanyi Nie, Jean-Christophe Blancon, Constantinos C. Stoumpos, Reza Asadpour, Boris Harutyunyan, Amanda J. Neukirch, Rafael Verduzco, Jared J. Crochet, Sergei Tretiak, Laurent Pedesseau, Jacky Even, Muhammad A. Alam, Gautam Gupta, Jun Lou, Pulickel M. Ajayan, Michael J. Bedzyk, Mercouri G. Kanatzidis & Aditya D. Mohite, “High-efficiency two-dimensional Ruddlesden – Popper perovskite solar cells”, Nature, 2016, 536, 312 –316
[25] Kyung Taek Cho, Giulia Grancini, Yonghui Lee, Emad Oveisi, Jaehoon Ryu, Osbel Almora, Manuel Tschumi, Pascal Alexander Schouwink, Gabseok Seo, Sung Heo, Jucheol Park, Jyongsik Jang, Sanghyun Paek, Germa` Garcia-Belmonte and Mohammad Khaja Nazeeruddin, “Selective growth of layered perovskites for stable and efficient photovoltaics”, Energy Environ. Sci., 2018, 11, 952-959
[26] Teck Ming Koh, Vignesh Shanmugam, Xintong Guo, Swee Sien Lim, Oliver Filonik, Eva M. Herzig, Peter M‥uller-Buschbaum, Varghese Swamy, Sum Tze Chien, Subodh G. Mhaisalkar and Nripan Mathews, “Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics”, J. Mater. Chem. A, 2018, 6, 2122–2128
[27] Hyun-Seok Yoo, Nam-Gyu Park, “Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells”, Solar Energy Materials and Solar Cells 2018, 179, 57–65
[28] Qi Chen, Huanping Zhou, Tze-Bin Song, Song Luo, Ziruo Hong, Hsin-Sheng Duan, Letian Dou, Yongsheng Liu and Yang Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells”, Nano Lett. 2014, 14, 4158?4163
[29] T. Jesper Jacobsson, Juan-Pablo Correa-Baena, Elham Halvani Anaraki, Bertrand Philippe, Samuel D. Stranks, Marine E. F. Bouduban, Wolfgang Tress, Kurt Schenk, Joe?l Teuscher, Jacques-E. Moser, Ha?kan Rensmo, and Anders Hagfeldt, “Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells”, J. Am. Chem. Soc., 2016, 138, 10331?10343
[30] Kyung Taek Cho, Sanghyun Paek, Giulia Grancini, Cristina Rolda’n-Carmona, Peng Gao, Yonghui Lee and Mohammad Khaja Nazeeruddin, “Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface”, Energy Environ. Sci., 2017, 10, 621- 627
[31] ZhipingWang, Qianqian Lin, Francis P. Chmiel, Nobuya Sakai, Laura M. Herz and Henry J. Snaith, “Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesiumformamidinium lead halide perovskites”, Nature Energy, 2017, 2, Artilce number : 17135
[32] G. Grancini, C. Rolda’n-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel & Mohammad Khaja Nazeeruddin, “One-Year stable perovskite solar cells by 2D/3D interface engineering”, Nature Communications, 2017, 8, Artilce number : 15684
[33] Jiandong Wang, Xiang Yao, Wen-Jing Xiao, Shuhui Wang, Guiying Xu, Xue-Qiang Chen, Si-Cheng Wu, Iris Visoly-Fisher, Eugene A. Katz, Yaowen Li, Jian Lin, Wei-Shi Li and Yongfang Li, “Mutual Composition Transformations Among 2D/3D Organolead Halide Perovskites and Mechanisms Behind”, Sol. RRL., 2018, Article number:201800125
[34] Makhsud I. Saidaminov, Junghwan Kim, Ankit Jain, Rafael Quintero-Bermudez, Hairen Tan, Guankui Long, Furui Tan, Andrew Johnston, Yicheng Zhao, Oleksandr Voznyy and Edward H. Sargent, “Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air”, Nature Energy, 2018, 3, 648–654
[35] Martin Stolterfoht, Christian M. Wolff, Jose A. Marquez, Shanshan Zhang, Charles J. Hages, Daniel Rothhardt, Steve Albrecht, Paul L. Burn, Paul Meredith, Thomas Unold and Dieter Neher,” Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells”, Nature Energy, 2018, DOI: https://doi.org/10.1038/s41560-018-0219-8
[36] Yun Lin, Yang Bai, Yanjun Fang, Zhaolai Chen, Shuang Yang, Xiaopeng Zheng, Shi Tang, Ye Liu, Jingjing Zhao, and Jinsong Huang, ” Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures”, J. Phys. Chem. Lett., 2018, 9, 654?658
[37] Chaoyan Ma, Chongqian Leng, Yixiong Ji, Xingzhan Wei, Kuan Sun, Linlong Tang, Jun Yang, Wei Luo, Chaolong Li, Yunsheng Deng, Shuanglong Feng, Jun Shen, Shirong Lu, Chunlei Du and Haofei Shi, “2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells”, Nanoscale, 2016, 8, 18309–18314
[38] Yang Bai, Shuang Xiao, Chen Hu, Teng Zhang, Xiangyue Meng, He Lin, Yinglong Yang, and Shihe Yang,” Dimensional Engineering of a Graded 3D–2D HalidePerovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics”, Adv. Energy Mater., 2017, 1701038
[39] Peng Chen, Yang Bai, Songcan Wang, Miaoqiang Lyu, Jung-Ho Yun, and Lianzhou Wang, “In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells”, Adv. Funct. Mater., 2018, 1706923
[40] Makhsud I. Saidaminov, Omar F. Mohammed, and Osman M. Bakr, “Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing”, ACS Energy Lett. 2017, 2, 889?896
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明