博碩士論文 103223007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.137.180.173
姓名 陳昱瑋(Yu-Wei Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 運用兩性親水作用層析磁性奈米粒子順序性純化醣基化和磷酸化胜?
(Sequential Enrichment of Glycopeptides and Phosphopeptides by Zwitterionic-HILIC (ZIC-HILIC) Magnetic Nanoparticles)
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑
★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome★ 利用具有親合性標籤的穩定同位素試劑針對蛋白質磷酸化反應程度的定量方法
★ 奈米粒子結合親和質譜術應用於人體血漿的多樣性免疫分析方法★ 親和質譜術應用於特定蛋白質之變異結構檢視與定量的研究
★ 利用磁性奈米探針與基質輔助雷射脫附/游離飛行時間質譜儀進行人類血液中前列腺特異抗原的定量★ 親和性質譜術應用在人類血漿檢測與定量氯屈磷酸
★ 人體胚胎幹細胞之次細胞蛋白質體定量分析★ 開發精簡及迅速的方法應用於深度磷酸化蛋白質體學剖析
★ 磷酸化蛋白體質譜法應用於微量組織
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在多種蛋白質轉譯後修飾中,N-連接醣基化和磷酸化在生物功能上扮演著相當重要的功能,像是細胞訊息傳導、蛋白質的穩定性和移動。然而,由於固有的修飾異質性和質譜游離效率的相互抑制,因此發展醣基化和磷酸化胜?純化的方法是必須的。雖然已有不少純化方法針對這兩種修飾,但多數方法都是針對兩種轉譯後修飾個別分析,近來,磁性奈米粒由於其能快速分離的能力和表面易於進行修飾而被廣泛地運用。
在此論文工作中,基於親水性作用力、活化的胺基和兩性離子官能基被修飾在磁性奈米粒子(由Elmer Austria Jr.合成並提供)的表面上用以純化出磷酸化和醣基化胜?。藉由實驗條件的最佳化後,包含溶液組成、pH值、奈米粒子使用量和有機相比例,在醣基化胜?的純化中,0.1%甲酸/95%乙?(調整至pH7)作為活化緩衝液,而1%磷酸/80%乙?和0.1%氨水/80%乙?則作為洗滌緩衝液,最後由2%氨水/50%乙?作為析出緩衝液。另外在磷酸化胜?的純化方面,0.1%甲酸/95%乙?(調整至pH 3) 作為活化緩衝液,而6%乙酸/85%乙?
則作為洗滌緩衝液,最後由5%氨水/50%乙?作為析出緩衝液。在磁性奈米粒子用量方面,醣基化/磷酸化胜?的純化皆是以2微克胜?比上100微克磁性奈米粒子的用量為最佳化條件。此外,藉由配合調整酸鹼值的策略,可在為α-和 β-酪蛋白(α-, β-casein)(磷酸化胜?)以及辣根過氧化物?(醣基化胜?)1:1的混和胜?中,在使用基質輔助雷射脫附游離飛行質譜儀的分析下,有效地在pH值3的環境下萃取分離出10條磷酸化胜?以及在pH 7的環境下得到9條醣基化胜?,分離效率分別為96.3% 和81.1%。
為增加樣品複雜度,在樣品中添加了牛血清白蛋白。在α-和 β-酪蛋白、辣根過氧化物?和牛血清白蛋白1:1:1:1的混合胜?樣品中,8條磷酸化胜?和7條醣基化胜?能分別在不同的沖提順序下被鑑定到。當提高了牛血清白蛋白的比例時,仍然有8條磷酸化胜?被鑑定,但卻分別只有4條和5條醣基化胜?在1:1:1:5和1:1:1:10的比例中被鑑定到。
接著將方法應用在PC9非小型細胞肺癌細胞(non-small-cell lung cancer cell)中,藉由直接純化醣基化胜?的方式,鑑定到306條醣胜?和35種醣型,此外,在去醣基化的作用下,1068條去醯胺基的胜?被鑑定到。另一方面,246條磷酸化胜?(231條單一磷酸化,15條多重磷酸化)則在直接純化磷酸化胜?被偵測到。在起始200微克的PC9膜胜?,經過除鹽和順序性純化策略下,246條磷酸化胜?(209條單一磷酸化, 27條多重磷酸化),432條去醯胺基的胜?以及243條醣胜?(24種不同的醣型)皆在液相層析串聯三合一式質譜儀的分析下被鑑定。
這些結果都顯示,此種兩性親水作用磁性奈米粒子在針對大範圍的醣基化和磷酸化胜?的純化和鑑定上,都具有相當高的發展潛力。
摘要(英) Among various protein post-translational modification (PTM), N-linked glycosylation and phosphorylation are among the most ubiquitous PTMs and play important roles in many biological functions, such as signal transduction, protein stability, and mobility. However, due to inherent heterogeneity of modification site and structure and ion suppression effect from free peptides during mass spectrometry analysis, it is necessary to develop enrichment strategy prior to mass spectrometry (MS) analysis. Though there are many enrichment methods developed for these two PTMs, both glycopeptides and phosphopeptides require different enrichment approaches.
Recently, magnetic nanoparticles (MNPs) have been widely used in biomedical applications mainly because of its capability for surface functionalization and fast separation by magnetic extraction. In this thesis, based on the hydrophilic interaction, active NH2- and zwitterionic functional groups were anchored (provided by Elmer Austria Jr.) on the surface of the magnetic nanoparticles (amine/zwitterionic-hydrophilic interaction based magnetic nanoparticle, NH2/ZIC-HILIC MNP) for simultaneous enrichment of glycopeptides and phosphopeptides. Four main parts were optimized in this work, including buffer composition, pH value, organic composition and particle amount. In glycopeptide enrichment, 0.1% formic acid (FA) with 95% acetonitrile (ACN) (adjusted to pH 7) were used as incubation buffer; 1% phosphoric acid with 80% ACN and 0.1% ammonium hydroxide (NH4OH) with 80% ACN were applied as washing buffer and 2% NH4OH/50% ACN for elution buffer respectively.
On the other hand, 0.1% FA/95% ACN (adjusted to pH 3) were used as incubation buffer. 6% acetic acid (AA) with 85% ACN and 5% NH4OH/50% ACN were applied as washing buffer and elution buffer respectively. 2μg peptides to 100μg nanoparticles was the optimized usage ratio for both glycopeptide and phosphopeptide enrichment.
By pH modulation strategy, effective separation of both glycopeptides in pH=7 and phosphopeptides in pH=3 can be achieved from a 1:1:1 mixture of α- and β-casein (phosphoproteins) and HRP (glycoprotein), 10 phosphopeptides in phosphopeptide elute fraction and 9 glycopeptides in glycopeptide elute fraction were identified in MALDI-TOF analysis with 96.3% and 81.1% separation efficiency for phosphopeptides and glycopeptides respectively.
To increase the complexity of the sample, bovine serum albumin (BSA) protein was added into the sample. In ratio of HRP : α-casein : β-casein : BSA= 1:1:1:1, 8 phosphopeptides still can be detected and dominate in the phosphopeptide elute fraction; in the glycopeptide elute fraction, though there are still 7 glycopeptides can be detected, When BSA ratio go higher up to 1:1:1:10, no significant influence in phosphopeptide fraction, although still 8 phosphopeptides were still detected, however, there are only 4 and 5 glycopeptides were detected in ratio 1:1:1:5 and 1:1:1:10 respectively.
Further application to the proteome level was demonstrated in PC9 cell line, a non-small cell lung cancer (NSCLC) cell line. By direct glycopeptide enrichment, 306 unique intact glycopeptides and 35 unique glycan structure were identified. With deglycosylation treatment by PNGase F, 1068 deamidated peptides with consensus motif NxS/T/V/C (x belongs to any amino acids but not proline) were detected. On the other hand, 246 phosphopeptides (231 mono-phosphorylated and 15 multi-phosphorylated) were identified in direct phosphopeptides. With initial 200μg membrane peptide from PC9 cell and followed by desalting and sequential enrichment strategy, 236 phosphopeptides (209 mono-phosphorylated and 27 multi-phosphorylated) were detected in phosphopeptide elute fraction. 243 unique intact glycopeptides (24 unique glycan structure) and 432 deamidated peptides with glycosylation motif (after deglycosylation) were identified in glycopeptide elute fraction combined with LC-MS/MS analysis using orbitrap fusion lumos mass spectrometry. These results further demonstrate that NH2/ZIC HILIC MNP can be a highly-potential method for characterization of both phosphopeptides and glycopeptides.
關鍵字(中) ★ 磷酸化
★ 醣基化
★ 磁性奈米粒子
★ 兩性親水層析作用
關鍵字(英) ★ phosphorylation
★ glycosylation
★ magnetic nanoparticle
★ Zwitterionic-HILIC
論文目次 中文摘要 i
Abstract iii
誌謝 vi
Table of Context vii
List of Abbreviations x
Chapter 1 Introduction 1
1.1 Protein glycosylation 1
1.1.1 Analyzing glycosylation in proteins by mass spectrometry approach 2
1.2 Protein phosphorylation 9
1.2.1 Analyzing phosphorylation in proteins 10
1.3 Magnetic nanoparticles (MNPs) 12
1.3.1 Enrichment of glycopeptides and phosphopeptides by using MNPs 13
1.4 Thesis Organization and Objectives 15
Chapter 2 Material and Methods 17
2.1 Materials 17
2.2 Method 18
2.2.1 Preparation of magnetic of nanoparticle 18
(1) Fabrication of core MNP via thermal decomposition method 18
(2) Ligand encapsulation by using amidosulfobetaine-14 (ASB-14) 19
(3) Silica and amine functionalization of the MNPs 19
2.2.2 In-solution digestion for standard proteins 20
2.2.3 Membrane protein extraction 21
2.2.4 Gel-assisted Digestion 22
2.2.5 Desalting (SDB-XC) 24
2.2.6 Enrichment of glycopeptides by using NH2/ZIC-HILIC MNP 25
2.2.7 Enrichment of phosphopeptides by using NH2/ZIC-HILIC MNP 26
2.2.8 Simultaneous enrichment of glycopeptides and phosphopeptides by pH modulation strategy in peptide mixture 27
2.2.9 Enrichment of glycopeptides from PC9 non-small cell lung cancer cell 28
2.2.10 Simultaneous enrichment of glycopeptides and phosphopeptides by pH modulation strategy from PC9 non-small cell lung cancer cell 29
2.3 Mass spectrometer and data analysis 30
2.3.1 MALDI-TOF MS Analysis 30
2.3.2 Q-TOF LC-MS/MS Analysis 31
2.3.3 Orbitrap LC-MS/MS Analysis 32
2.3.4 Q-TOF LC-MS/MS Data processing and analysis 33
2.3.5 Glycopeptide identification by Byonic software 34
Chapter 3 Results and Discussions 35
3.1 Rationale of Enrichment of Glycopeptides and Phosphopeptides by using Zwitterionic-HILIC (ZIC-HILIC) Magnetic Nanoparticles 35
3.1.1 Magnetic nanoparticle characterization 38
3.2 Method development for single glycoprotein enrichment 39
3.2.1 Enrichment capability for determination of functionalized material on MNP surface 40
3.2.2 Effect of incubation buffer in glycopeptide enrichment by NH2/ZIC HILIC MNP 42
3.2.3 Effect of pH value of incubation buffer on glycopeptide enrichment by NH2/ZIC HILIC MNP 43
3.2.4 Effect of elution buffer on glycopeptide enrichment by NH2/ZIC HILIC MNP 44
3.3 Method development of single phosphopeptide enrichment 45
3.3.1 Effect of pH on phosphopeptide enrichment by NH2/ZIC HILIC MNP 46
3.3.2 Effect of washing buffer on phosphopeptide enrichment by NH2/ZIC HILIC MNP 47
3.3.3 Effect of elution buffer on phosphopeptide enrichment by NH2/ZIC HILIC MNP 48
3.3.4 Optimization of the amount of MNP@ SB/SiO2/NH2 for glycopeptide and phosphopeptide enrichment 48
3.4.1 Simultaneous and sequential enrichment of glycopeptides and phosphopeptides by pH modulation strategy in peptide mixture 49
3.4.2 Simultaneous and sequential enrichment of glycopeptides and phosphopeptides by pH modulation strategy in PC9 non-small cell lung cancer cell 52
Chapter 4 Conclusion 55
References 57
Figures 61
Appendix 77
參考文獻 1. Chen, C.-C., et al., Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst, 2014. 139(4): p. 688-704.
2. Ji, Y., et al., Efficient enrichment of glycopeptides using metal–organic frameworks by hydrophilic interaction chromatography. Analyst, 2014. 139(19): p. 4987-4993.
3. Xin, F. and P. Radivojac, Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics, 2012. 28(22): p. 2905-2913.
4. Pinho, S.S. and C.A. Reis, Glycosylation in cancer: mechanisms and clinical implications. Nature Reviews Cancer, 2015. 15(9): p. 540.
5. Fuster, M.M. and J.D. Esko, The sweet and sour of cancer: glycans as novel therapeutic targets. Nature Reviews Cancer, 2005. 5(7): p. 526.
6. Bennett, E.P., et al., Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 2011. 22(6): p. 736-756.
7. Clausen, H. and E.P. Bennett, A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology, 1996. 6(6): p. 635-646.
8. Madera, M., et al., Efficacy of glycoprotein enrichment by microscale lectin affinity chromatography. Journal of separation science, 2008. 31(14): p. 2722-2732.
9. McDonald, C.A., et al., Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Molecular & Cellular Proteomics, 2009. 8(2): p. 287-301.
10. Ma, C., et al., N?linked glycoproteome profiling of human serum using tandem enrichment and multiple fraction concatenation. Electrophoresis, 2013. 34(16): p. 2440-2450.
11. Chen, J., P. Shah, and H. Zhang, Solid phase extraction of N-linked glycopeptides using hydrazide tip. Analytical chemistry, 2013. 85(22): p. 10670-10674.
12. Malerod, H., et al., Comprehensive profiling of N-linked glycosylation sites in HeLa cells using hydrazide enrichment. Journal of proteome research, 2012. 12(1): p. 248-259.
13. Xu, Y., et al., Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Analytical chemistry, 2008. 81(1): p. 503-508.
14. Matsumura, K., et al., Carbohydrate Binding Specificity of a Fucose-specific Lectin from Aspergillus oryzae A NOVEL PROBE FOR CORE FUCOSE. Journal of Biological Chemistry, 2007. 282(21): p. 15700-15708.
15. Zhang, Y., et al., Mass spectrometry-based N-glycoproteomics for cancer biomarker discovery. Clinical proteomics, 2014. 11(1): p. 18.
16. Wohlgemuth, J., et al., Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Analytical biochemistry, 2009. 395(2): p. 178-188.
17. Liu, Y., et al., Synthesis and evaluation of a silica-bonded concanavalin A material for lectin affinity enrichment of N-linked glycoproteins and glycopeptides. Analytical Methods, 2015. 7(1): p. 25-28.
18. Chen, Z., et al., Dynamic evaluation of cell surface N-glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin A-integrating gold-nanoparticle-modified Ru (bpy) 32+-doped silica nanoprobe. Analytical chemistry, 2013. 85(9): p. 4431-4438.
19. Naismith, J.H. and R.A. Field, Structural basis of trimannoside recognition by concanavalin A. Journal of Biological Chemistry, 1996. 271(2): p. 972-976.
20. Zhao, J., et al., Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. Journal of proteome research, 2006. 5(7): p. 1792-1802.
21. Zhang, H., et al., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature biotechnology, 2003. 21(6): p. 660.
22. Nishikaze, T., et al., Reversible hydrazide chemistry-based enrichment for O-GlcNAc-modified peptides and glycopeptides having non-reducing GlcNAc residues. Analyst, 2013. 138(23): p. 7224-7232.
23. Zhang, J. and D.I. Wang, Quantitative analysis and process monitoring of site-specific glycosylation microheterogeneity in recombinant human interferon-γ from Chinese hamster ovary cell culture by hydrophilic interaction chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1998. 712(1-2): p. 73-82.
24. Buszewski, B. and S. Noga, Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Analytical and bioanalytical chemistry, 2012. 402(1): p. 231-247.
25. Yu, L., et al., Hydrophilic interaction chromatography based enrichment of glycopeptides by using click maltose: a matrix with high selectivity and glycosylation heterogeneity coverage. Chemistry–A European Journal, 2009. 15(46): p. 12618-12626.
26. Alpert, A.J., Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of chromatography A, 1990. 499: p. 177-196.
27. Yoshida, T., Peptide separation by hydrophilic-interaction chromatography: a review. Journal of biochemical and biophysical methods, 2004. 60(3): p. 265-280.
28. Boersema, P.J., et al., Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. Journal of proteome research, 2007. 6(3): p. 937-946.
29. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer journal, 2014. 46(8): p. 436.
30. Villen, J. and S.P. Gygi, The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature protocols, 2008. 3(10): p. 1630.
31. Humphrey, S.J., D.E. James, and M. Mann, Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends in Endocrinology & Metabolism, 2015. 26(12): p. 676-687.
32. Cohen, P., The role of protein phosphorylation in human health and disease. The FEBS Journal, 2001. 268(19): p. 5001-5010.
33. Shaohui, S., et al., Phosphopeptide enrichment strategy based on strong cation exchange chromatography. Chinese Journal of Chromatography, 2008. 26(2): p. 195-199.
34. Larsen, M.R., et al., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & cellular proteomics, 2005. 4(7): p. 873-886.
35. Kokubu, M., et al., Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Analytical chemistry, 2005. 77(16): p. 5144-5154.
36. Tsai, C.-F., et al., Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. Journal of proteome research, 2008. 7(9): p. 4058-4069.
37. Matheron, L., et al., Characterization of biases in phosphopeptide enrichment by Ti4+-immobilized metal affinity chromatography and TiO2 using a massive synthetic library and human cell digests. Analytical chemistry, 2014. 86(16): p. 8312-8320.
38. Hennrich, M.L., et al., Ultra acidic strong cation exchange enabling the efficient enrichment of basic phosphopeptides. Analytical chemistry, 2012. 84(4): p. 1804-1808.
39. Lu, A.H., E.e.L. Salabas, and F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 2007. 46(8): p. 1222-1244.
40. Zhao, M., et al., Recent advances in the application of core–shell structured magnetic materials for the separation and enrichment of proteins and peptides. Journal of Chromatography A, 2014. 1357: p. 182-193.
41. Chen, C.-T. and Y.-C. Chen, Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Analytical chemistry, 2005. 77(18): p. 5912-5919.
42. Zhao, L., et al., The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. Journal of the American Society for Mass Spectrometry, 2008. 19(8): p. 1176-1186.
43. Capangpangan, R., et al. Selective enrichment and sensitive detection of candidate disease biomarker using a novel surfactant-coated magnetic nanoparticles. in IOP Conference Series: Materials Science and Engineering. 2014. IOP Publishing.
44. Sun, N., et al., Hydrophilic mesoporous silica materials for highly specific enrichment of N-linked glycopeptide. Analytical chemistry, 2017. 89(3): p. 1764-1771.
45. Yan, J., et al., Selective enrichment of glycopeptides/phosphopeptides using porous titania microspheres. Chemical Communications, 2010. 46(30): p. 5488-5490.
46. Zhang, Y., H. Wang, and H. Lu, Sequential selective enrichment of phosphopeptides and glycopeptides using amine-functionalized magnetic nanoparticles. Molecular BioSystems, 2013. 9(3): p. 492-500.
47. Zou, X., J. Jie, and B. Yang, Single-Step Enrichment of N-Glycopeptides and Phosphopeptides with Novel Multifunctional Ti4+-Immobilized Dendritic Polyglycerol Coated Chitosan Nanomaterials. Analytical chemistry, 2017. 89(14): p. 7520-7526.
48. Han, C.-L., et al., A multiplexed quantitative strategy for membrane proteomics opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Molecular & Cellular Proteomics, 2008. 7(10): p. 1983-1997.
指導教授 陳玉如(Yu-Ju Chen) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明