博碩士論文 105626007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.226.166.214
姓名 鍾孟儒(Chung Meng Ju)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 使用IIA與TATA法,對1960智利海嘯與1867基隆海嘯事件進行還原與分析
(IIA and TATA approaches to reconstructing and analyzing the 1960 Chile and 1867 Keelung tsunami events)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討 1960 年智利地震海嘯及 1867 年基隆海嘯事件,並使用 COMCOT 數值模式進行模擬與分析。分析方法採影響強度分析法(Impact Intensity Analysis, IIA),並搭配本研究新發展之海嘯到時分析法(Tsunami Arrival-Time Analysis, TATA),以分析可能之海嘯源及評估潛在海嘯強度。 IIA 法植基於互逆格林函數,將研究區域布設單元海嘯點源,並求解各點源 之海嘯衝擊係數,其結果可顯示各點源位置對於研究場址之海嘯影響強度。 而 TATA 法則是利用海嘯之傳播方向,分析海嘯源走向與海嘯到時之關係, 以掌握大規模之帶狀海嘯之方向性。IIA 法可以精準掌握各地點之海嘯衝擊 敏感性,然而 IIA 法並無法掌握海嘯源之方向性,因此本研究提出 TATA 法, 來加強對海嘯源方向性之掌握,並透過亞普海溝及馬里亞納海溝南端之情 境,證明 IIA 法結合 TATA 法之準確性。透過 IIA 與 TATA 法之分析,發現 1960 年之地震震央所在位置,對於台灣之影響並非最為顯著,經過交叉比 對與分析,發現 1960 智利地震位置往北偏約 500 公里,海嘯波高於基隆港 會增加 70%。類似的情況亦發生於夏威夷希洛市,其波高會增加 50%。本 研究亦使用 IIA 法分析 1867 年基隆海嘯之海嘯源。透過文獻對於基隆港與 金山之海嘯記載與描述進行交叉比對,結果顯示基隆海谷及棉花峽谷之海 底山崩與核二廠東北方之海底火山處,有滿足文獻記載之海嘯源。此外,發 現介於宜蘭縣及花蓮縣之和平海盆對於台灣北部(基隆及金山)存在著潛在 海嘯威脅,且由台灣北部各研究點之 IIA 發現八重山所發生之海嘯對台灣 影響輕微。本研究亦透過比較線性及非線性之 IIA,獲得非線性效應之強弱 分布圖,有助於了解台灣北部海域複雜海底地形所伴隨之非線性效應分布。
摘要(英) The purpose of this research contains two parts: first, assessing the potential threats of the tsunamis of 1960 Chilean Tsunami and 1867 Keelung Tsunami, second, locating the latter event. Both parts involve COMCOT (Cornell Multi-
grid Coupled Tsunami Model) integrated with IIA (Impact Intensity Analysis), and TATA (Tsunami Arrival-Time Analysis), which accuracy has been proved
by applying to the scenarios for Yap Trench and Mariana Trench. Through applying the methods of IIA and TATA, it has been found that the impact in Taiwan is not significant due to the source of 1960 Chilean Tsunami. The cross- validation shows that the height of tsunami at Keelung would have increased 70%, while the one at Hilo City would increased 50%, if the souse of 1960 Chilean Tsunami had been shifted 500 kilometers toward north referred to the source. Results of IIA at Jinshan and Keelung in northern Taiwan were used to design scenarios. It was found that the wave heights at Chilung Valley, Mien-Hua Canyon and the unnamed submarine volcano is located in the northeast of the second nuclear plant, concur with the literature. In addition, it reveals also potential tsunami hazard to the north of Taiwan caused by the movements in Hoping Basin. The map obtained by the comparison of linear and nonlinear IIA results is used to understand the distribution of nonlinear effects of the complex bathymetry in northern Taiwan.
關鍵字(中) ★ Tsunami arrival Time Analysis
★ Impact Intensity Analysis
★ 1960 智利地震海嘯
★ 1867 基隆海嘯
關鍵字(英) ★ Tsunami arrival Time Analysis
★ Impact Intensity Analysis
★ 1960 Chile Earthquake Tsunami
★ 1867 Keelung Tsunami
論文目次 中文摘要 V
ABSTRACT VI
致謝辭 VII
目錄 VIII
圖目錄 X
表目錄 XVII
第1章 緒論 1
1-1 前言及研究動機 1
1-2 文獻回顧 3
1-2-1 1960年智利地震海嘯事件 3
1-2-2 1867年基隆海嘯事件 7
第2章 模式介紹與研究方法 10
2-1 模式介紹 10
2-2 互逆格林函數 11
2-3 影響強度分析法(Impact Intensity Analysis, IIA) 13
2-4 海嘯到時分析法(Tsunami Arrival-Time Analysis, TATA) 15
第3章 海嘯到時分析法之驗證 16
第4章 模擬結果與討論 21
4-1 1960年智利地震海嘯 21
4-1-1 事件還原 22
4-1-2 震央位置對海嘯波高之敏感性分析 33
4-2 1867年基隆海嘯事件 52
4-2-1 震央位置對海嘯波高之敏感性 54
4-2-2 海嘯源位置之設定 92
第5章 結論 103
參考文獻 105
附錄:COMCOT模式理論 109
參考文獻 [1] Barrientos, S. E., & Ward, S. N. (1990). The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophysical Journal International, 103(3), 589-598.
[2] Bryant, E. (2014). Tsunami: the underrated hazard. Springer.
[3] Cox, D. C., & Mink, J. F. (1963). The tsunami of 23 May 1960 in the Hawaiian Islands. Bulletin of the Seismological Society of America, 53(6), 1191-1209.
[4] Cisternas, M., Atwater, B. F., Torrejon, F., Sawai, Y., Machuca, G., Lagos, M., & Shishikura, M. (2005). Predecessors of the giant 1960 Chile earthquake. Nature, 437(7057), 404.
[5] Chen, G. Y., & Liu, C. C. (2009). Evaluating the Location of Tsunami Sensors: Methodology and Application to the Northeast Coast of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 20(4).
[6] Chao, W. A., Wu, T. R., Ma, K. F., Kuo, Y. T., Wu, Y. M., Zhao, L., ... & Tsai, Y. L. (2018). The Large Greenland Landslide of 2017: Was a Tsunami Warning Possible?. Seismological Research Letters.
[7] Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). World Scientific Publishing Company.
[8] Eaton, J. P., Richter, D. H., & Ault, W. U. (1961). The tsunami of May 23, 1960, on the Island of Hawaii. Bulletin of the Seismological Society of America, 51(2), 135-157.
[9] Fujii, Y., & Satake, K. (2013). Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data. Pure and Applied Geophysics, 170(9-10), 1493-1509.
[10] Gica, E., Teng, M. H., Liu, P. L. F., Titov, V., & Zhou, H. (2007). Sensitivity analysis of source parameters for earthquake-generated distant tsunamis. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(6), 429-441.
[11] Herve, F., & Ota, Y. (1993). Fast Holocene uplift rates at the Andes of Chiloe, southern Chile. Andean Geology, 20(1), 15-23.
[12] Heinrich, P., Guibourg, S., & Roche, R. (1996). Numerical modeling of the 1960 Chilean tsunami. Impact on French Polynesia. Physics and Chemistry of the Earth, 21(1-2), 19-25.
[13] Hayes, G. P., Smoczyk, G. M., Benz, H. M., Furlong, K. P., & Villasenor, A. (2015). Seismicity of The Earth 1900-2013, Seismotectonics of South America (Nazca Plate Region) (No. 2015-1031-E). US Geological Survey.
[14] Kanamori, H., & Cipar, J. J. (1974). Focal process of the great Chilean earthquake May 22, 1960. Physics of the Earth and Planetary Interiors, 9(2), 128-136.
[15] Loomis, H. G. (1979). Tsunami prediction using the reciprocal property of Green′s functions. Marine Geodesy, 2(1), 27-39.
[16] Liu, P. L., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. Cornell University.
[17] Li, L., Qiu, Q., & Huang, Z. (2012). Numerical modeling of the morphological change in Lhok Nga, west Banda Aceh, during the 2004 Indian Ocean tsunami: understanding tsunami deposits using a forward modeling method. Natural hazards, 64(2), 1549-1574.
[18] Mueller, C., Power, W., Fraser, S., & Wang, X. (2015). Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example. Journal of Geophysical Research: Solid Earth, 120(1), 488-502.
[19] Okamoto, Y. (1913). The earthquake catastrophes which took place around Kimpori in Doii Era. Trans. Nat. Hist. Soc. Formosa 3, 168–172 (in Japanese).
[20] Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.
[21] Omira, R., Baptista, M. A., Miranda, J. M., Toto, E., Catita, C., & Catalao, J. (2010). Tsunami vulnerability assessment of Casablanca-Morocco using numerical modelling and GIS tools. Natural hazards, 54(1), 75-95.
[22] Plafker, G., & Savage, J. C. (1970). Mechanism of the Chilean earthquakes of May 21 and 22, 1960. Geological Society of America Bulletin, 81(4), 1001-1030.
[23] Plafker, G. (1972). Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics. Journal of Geophysical Research, 77(5), 901-925.
[24] Sievers C, H. A., Villegas C, G., & Barros, G. (1963). The seismic sea wave of 22 May 1960 along the Chilean coast. Bulletin of the Seismological Society of America, 53(6), 1125-1190.
[25] Tsuji, Y. (1991). Decay of the initial crest of the 1960 Chilean tsunami scattering of tsunami waves caused by sea mounts and the effects of dispersion. In Proceeding of the 2nd UJNR Tsunami Workshop (pp. 13-25).
[26] Tsai, C. H., Hsu, S. K., Lin, S. S., Yang, T. F., Wang, S. Y., Doo, W. B., ... & Liang, C. W. (2017). The Keelung Submarine Volcano in the near-shore area of northern Taiwan and its tectonic implication. Journal of Asian Earth Sciences, 149, 86-92.
[27] Tsai, C. H., Huang, C. L., Hsu, S. K., Doo, W. B., Lin, S. S., Wang, S. Y., ... & Liang, C. W. (2018). Active normal faults and submarine landslides in the Keelung Shelf off NE Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 29(1).
[28] Wilson, B. W., Webb, L. M., & Hendrickson, J. A. (1962). The nature of tsunamis. Their Generation And Dispersion In Water Of Finite Depth (No. Tr Sn 57 2). National Engineering Science Co Pasadena Calif.
[29] Wang, X., & Liu, P. L. (2005). A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami. Computer Modeling in Engineering and Sciences, 10(2), 171.
[30] Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: Predictive equations and case studies. Journal of waterway, port, coastal, and ocean engineering, 131(6), 298-310.
[31] Wang, X., & Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147-154.
[32] Wang, X., & Liu, P. L. F. (2007). Numerical simulations of the 2004 Indian Ocean tsunamis—coastal effects. Journal of Earthquake and Tsunami, 1(03), 273-297.
[33] Wang, X. (2009). User manual for COMCOT version 1.7 (first draft). Cornel University, 65.
[34] Wu, T. R. (2012). Deterministic study on the potential large tsunami hazard in Taiwan. Journal of Earthquake and Tsunami, 6(03), 1250034.
[35] Xu, Z. (2007). The all-source Green’s function and its applications to tsunami problems. Science of Tsunami Hazards, 26(1), 59.
[36] Yen, Y. T., & Ma, K. F. (2011). Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464-481.
[37] Yu, N. T., Yen, J. Y., Chen, W. S., Yen, I. C., & Liu, J. H. (2016). Geological records of western Pacific tsunamis in northern Taiwan: AD 1867 and earlier event deposits. Marine Geology, 372, 1-16.
[38] Ocean Data Bank of the Ministry of Science and Technology, Republic of China (http://www.odb.ntu.edu.tw/)
[39] 何恭算, 王士偉, & 戴昌鳳. (2009). 彭佳嶼、棉花嶼、花瓶嶼及基隆嶼之地質與地形資源.
[40] 吳函. (2017). 發展地震海嘯關係分析法並研究台灣之潛在海嘯威脅. 中央大學水文與海洋科學研究所學位論文, 1-153.
[41] 李珮瑜. (2015). 蘭嶼海嘯石與 1867 年基隆海嘯之動力分析. 中央大學水文與海洋科學研究所學位論文, 1-163.
[42] 李俊叡. (2014). 台灣海嘯速算系統建置暨 1867 年 基隆海嘯事件之還原與分析. 中央大學水文與海洋科學研究所學位論文, 1-170.
[43] 徐明同. (1981). 海嘯所引起之災害. 氣象學報 27.1.
[44] 陳冠宇, 蘇青和, 陳陽益, 單誠基, 劉俊志, 林佳豪. (2009). 台灣沿岸海嘯影響範圍與淹水潛勢分析. 交通部運輸研究所港灣研究中心.
[45] 陳冠宇. (2013). 海嘯預警與溢淹潛勢圖數值模擬之回顧與探討. 海洋工程學刊, 13(1), 69-91.
[46] 陳冠宇, 邱永芳, 姚建中, 連政佳, 劉俊志, & 林敬樺. (2012). 台北港與基隆港之海嘯風險評估. 前瞻科技與管理, 2(2), 147-166.
[47] 許明光, & 李起彤. (1996). 台灣及其鄰近地區之海嘯.
[48] 鄭世楠. (2013). 塵封的裂痕歷史地震系列演講-第一講1867年基隆地震. TEC. 台灣地震科學中心.
指導教授 吳祚任 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明