參考文獻 |
Berger J.O. (1985) Statistical Decision Theory and Bayesian Analysis, 2nd Ed. Springer-Verlag, New York.
Carlin B.P. and Louis T.A. (2000) Bayes and Empirical Bayes Methods for Data Analysis, 2nd Ed. Chapman & Hall/CRC, New York.
Chib S. and Greenberg E. (1995) Understanding the Metropolis-Hastings algorithm. The American Statistician, 49, 327-335.
Chiu T.Y.M., Leonard T. and Tsui K-W. (1996) The matrix-logarithmic covariance model. Journal of the American Statistical Association, 91, 198-210.
Daniels M.J. and Kass R.E. (1999) Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94, 1254-1263.
Daniels M.J. and Pourahmadi M. (2002) Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553-566.
Daniels M.J. and Zhao Y.D. (2003) Modelling the random effects covariance matrix in longitudinal data. Statistics in Medicine, 22, 1631-1647.
Davidian M. and Giltinan D.M. (1995) Nonlinear Models for Repeated Measurement Data. Chapman and Hall/CRC, New York.
Diggle P.J., Liang K-Y and Zeger S.L. (1994) Analysis of Longitudinal Data. Oxford University Press, New York.
Geisser S. (1993) Predictive Inference. Chapman and Hall, London.
Graybill F. (1976) Theory and Application of the Linear Model. Wadsworth, California.
Geman S. and Geman D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6, 721-741.
Gilks W.R. and Wild P. (1992) Adaptive rejection sampling for Gibbs sampling. J. Roy. Statist. Soc., Ser. C (Applied Statistics), 41, 337-348.
Hastings W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
Laird N.M. and Ware J.J. (1982) Random-effects models for longitudinal data. Biometrics, 38, 973-9.
Leonard T. and Hsu J.S.J. (1992) Bayesian inference for a covariance matrix. Annals of Statistics, 20, 1669-1696.
Lin X., Raz J. and Harlow S.D. (1997) Linear mixed models with heterogeneous within-cluster variances. Biometrics, 53, 910-923.
Mathews V.J. and Sicuranza G.L. (2000) Polynomial Signal Processing. John Wiley & Sons, New York.
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E. (1953) Equations of state calculations by fast computing machines. J. Chemical Physics, 21, 1087-1091.
Pourahmadi M. (1999) Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization. Biometrika, 86, 677-690.
Pourahmadi M. (2000) Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika, 87, 425-435.
Pourahmadi M. and Daniels M.J. (2002) Dynamic conditional linear mixed models for longitudinal data. Biometrics, 58, 225-231.
Rao C.R. (1973) Linear Statistical Inference and its Applications, 2nd Ed. John Wiley, New York.
Ross S.M. (2002) Simulation, 3rd Ed. Academic Press, New York.
Searle S.R., Casella G. and McCulloch C.E. (1992) Variance Components. John Wiley & Sons, New York.
Spiegelhalter D.J., Best N.G., Carlin B.P. and Linde A. (2002) Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583-639.
Zhang F. and Weiss R.E. (2000) Diagnosing explainable heterogeneity of variance in random effects models. Journal of Statistics, 28, 3-18. |