博碩士論文 105226021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:18.117.104.132
姓名 劉文獻(Wen-Hsien Liu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 提升P型Al0.5Ga0.5N歐姆接觸電極的導電性及反射率
(Enhancing Conductance and Reflectivity of the Ohmic Contact to P-type Al0.5Ga0.5N)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) P型氮化物半導體大多以鎳金(Ni/Au)作為歐姆接觸電極。對覆晶型(Flip-Chip)深紫外(deep utralviolet, DUV, 波長 ? 290 nm) LED來說,金在DUV波段的反射率不到30%,嚴重犧牲元件的光萃取效率。為了解決此問題,我們在DUV LED的P型電極上需克服兩大難題:(1) 提升金屬電極在DUV波段的反射率;(2)降低P型氮化鋁鎵(Al0.5Ga0.5N)表面的接觸電阻。
在本研究中,我們以Ni/Al/Ti/Au取代Ni/Au。我們利用高真空電子束暨熱阻式蒸鍍系統 (E-gun/Thermal),在P型Al0.5Ga0.5N磊晶層上蒸鍍Ni/Al/Ti/Au,再分析退火溫度對Ni/Al/Ti/Au接觸電阻的影響。我們發現,550℃的退火溫度可將接觸電阻及片電阻分別從2.81x101 ohm-cm2及9.41x108 ohm/sq,降低至3.05x10-2 ohm-cm2及8.79x105 ohm/sq。在反射率方面,Ni/Al/Ti/Au在280 nm的反射率可達57%,遠高於Ni/Au的24%。雖然Ni/Al/Ti/Au的導電度有待改進,但由於Al的高UV反射率,可以補償其在電性上的損失。未來,我們將持續優化Ni/Al/Ti/Au的製程條件,希望能有效提升DUV LED的發光效率。
摘要(英) Deep ultraviolet (DUV) LEDs traditionally employ Ni/Au as the ohmic contact to p-type AlGaN. However, for flip-chip devices, the reflectivity of gold at DUV wavelengths is below 30%, severely sacrificing the light extraction efficiency of DUV LEDs. To address the issues, there are two challenges to overcome with the p-type ohmic contact: (1) Increasing reflectivity in the DUV regime; (2) Decreasing the contact resistance on p-type Al0.5Ga0.5N.
In this study, Ni/Au is replaced with Ni/Al/Ti/Au as the ohmic contact to p-type Al0.5Ga0.5N. The Al-based alloy was deposited by a high-vacuum electron-beam/thermal evaporation. The ohmic contact structure is then annealed at varied temperatures, with the attempt to reduce contact/sheet resistance. It is found that the annealing at 550 °C effectively reduces the specific contact resistance and the sheet resistance from 2.81x101 ohm-cm2 and 9.418x108 ohm/sq to 3.057x10-2 ohm-cm2 and 8.791x105 ohm/sq, respectively. For optical characterization, the reflectance of Ni/Al/Ti/Au at 280 nm reaches 57 %, significantly higher than that (24%) attained with Ni/Au. Although the conductivity of Ni/Al/Ti/Au on p-type Al0.5Ga0.5N remains to be improved, the high UV reflectivity is expected to compensate the loss in electrical performance. In the future, the fabrication of Ni/Al/Ti/Au will be optimized to enhance the external quantum efficiency of DUV LEDs.
關鍵字(中) ★ P 型氮化物 關鍵字(英)
論文目次 論文摘要................................................................................................................Ⅰ
Abstract.................................................................................................................Ⅱ
致謝.....................................................................................................................Ⅲ
目錄.....................................................................................................................Ⅳ
圖目錄.................................................................................................................Ⅵ
表目錄..............................................................................................................Ⅷ
第一章 緒論
1-1前言……………………………………………………………………….1
1-2鋁電極應用深紫外光波長LED的優勢…………………...……….…...3
1-3研究動機………………………………………………………………….8
1-4論文架構………………………………………………………………...11
第二章 實驗原理、方法與儀器
2-1製程步驟………………………………………………………………...12
2-2 Transfer Length Method量測原理……………………………………...19
2-3紫外線/可見光分光光譜儀檢測………………………………………..21
2-4霍爾量測原理…………………………………………………………...23
第三章 結果與討論
3-1金屬電極對電阻值的影響……………………………………………...26
3-2反射率在入射光280nm波長的比較…….……….…….….………..….34
3-3利用退火降低接觸電阻與片電阻……………………………………...36
第四章 結論與未來展望
4-1結論……………………………………………………………………...42
4-2未來展望………………………………………………………………...43
參考文獻……………………………………………………………………….44
參考文獻 [1] https://club.1688.com/article/55768490.html.
[2] Masahiro, A. et al. Growth of flat p-GaN contact layer by pulse flow method for high light- extraction AlGaN deep-UV LEDs with Al-based electrode. Phys. Status Solidi C 9, No. 3–4 (2012).
[3] Hideki, H. J. Appl. Phys. 97, 091101 1-19 (2005). (Focused Review: Invited Paper).
[4] Hideki, H., Tohru, Y., Norimichi, N., Tomoaki, O and Norihiko, K. 231–261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett 91, 071901 (2007).
[5] Hideki, H., Norimichi, N and Norihiko, K. 222 nm Deep-Ultraviolet AlGaN Quantum Well Light-Emitting Diode with Vertical Emission Properties. Appl. Phys. Express 3, 032102 (2010).
[6] Hideki, H. et al. 222–282 nm AlGaN and InAlGaN?based deep?UV LEDs fabricated on high?quality AlN on sapphire. Phys. Status Solidi A 206, 1176-1182 (2009).
[7] Hideki, H., Noritoshi, M., Sachie, F., Shiro, T., and Norihiko, K. Recent progress and future prospects of AlGaN-based high-ef?ciency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 53, 100209 (2014).
[8] Noritoshi, M and Hideki, H. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi C 10, No. 11 (2013).
[9] Noritoshi, M., Hideki, H. Improvement of Light-Extraction Efficiency of Deep-UV LEDs using Transparent p-AlGaN Contact Layer. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). (2013).
[10] Takayoshi, T. et al. Deep-ultraviolet light-emitting diodes with external quantum ef?ciency higher than 20% at 275nm achieved by improving light-extraction ef?ciency. Appl. Phys. Express 10, 031002 (2017).
[11] Yukio, N., Masahiko, S., Takahiko, S., Takao, Y., and Takashi, M . Successful fabrication of white light emitting diodes by using extremely high external quantum efficiency blue chips. phys. stat. sol. (a) 205, No. 5 (2008).
[12] Bass, M. Handbook of Optics. ISBN vol. 2 (2nd ed.), McGraw-Hill 0070479747 (1994).
[13] https://myweb.ntut.edu.tw/~wwwemo/instrument_manual/ultraviolet.htm.
[14] S. R. Lee. et al. The band-gap bowing of AlxGa1-xN alloys. Appl. Phys. Lett Vol. 74, No. 22, 31 May (1999).
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明