博碩士論文 103481604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.148.113.180
姓名 阮潘英輝(Nguyen Phan Anh Huy)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 Robust and High-Accessibility Ranking Method for Crowdsourced Preference Sequences
(Robust and High-Accessibility Ranking Method for Crowdsourced Preference Sequences)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 結合人格特質與海報主色以類神經網路推薦電影之研究★ 資料視覺化圖表與議題之關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著社群網站與共享經濟的興起,Crowdsourcing 資料已在多個領域被廣泛使用。而經由網民提供的喜好資料以可做為產品或服務排序的基礎。但是綜合網民所提供的互相衝突且不齊全的資料獲取正確排序是相當複雜的議題。為了解決這個問題,本研究提出一個新的演算法。本方法修改與增強FCM以達到高可靠性與高使用性。為了驗證可靠性、使用性與排序正確性,本研究並包含一系列的實驗,實驗資料包含真實資料與人造資料。實驗結果顯示本研究較其他方法有較好的可靠性與使用性。而正確性也與最好的Borda Count 不分軒輊.
摘要(英) With the rapid development of social network and online services, crowdsourcing data
has been used for many solutions in various fields. The preference sequences obtained
through crowdsourcing are valuable resources for ranking. However, the aggregation of
incomplete and inconsistent preferences is complicated. To address these challenges, this
research proposed a novel method termed robust crowd ranking (RCR) based on a consistent
Fuzzy C-means (CFCM) approach to increase the robustness and accessibility of aggregated
preference sequences obtained through crowdsourcing. To verify the robustness, accessibility,
and accuracy of RCR, comprehensive experiments were conducted using synthetic and real
data. The simulation results validated that the RCR outperforms Borda Count, Dodgson, IRV
and Tideman methods.
關鍵字(中) ★ 排行
★ 靠性與高使用性
★ 使用性與排序正確性
關鍵字(英) ★ fuzzy c-means
★ accessibility,
★ crowdranking
★ Robust ranking
★ crowdsourcing
論文目次 ABSTRACT i
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iii
LIST OF FIGURES iv
LIST OF TABLES v
Explanation of symbols and abbreviations vi
Chapter 1. Introduction 1
1.1 Research background information 1
1.2 Contributions of the proposed model 3
1.3 Organization of the dissertation 3
Chapter 2. Related work 4
2.1 Crowdsourcing 4
2.2 Ranking Methods 7
Chapter 3. Methodology of Crowd Ranking 10
3.1 Preference Relation Matrix 11
3.2 FCM Based on Saaty Vectors 12
3.3 Converting a Centroid Into a Ranking Sequence 13
3.4 Identifying the Initial Centroid 16
Chapter 4. Experimental results for RCR 22
4.1 Robustness 23
4.1.1 Robustness Tests with synthetic data 24
4.1.2 Robustness tests using real data sets 28
4.2 Accessibility 30
4.3 Evaluation of Ranking Accuracy for Real Data Sets 32
Chapter 5. Conclusion and future research 34
5.1 Conclusion 34
5.2 Research Limitation and Future Research 35
References 36
參考文獻 [1] J. Howe, “Crowdsourcing: How the Power of the Crowd is Driving the Future of Business,” New York, NY: Random House, 2008.
[2] F. Meng and Q. An, “A New Approach for Group Decision Making Method with Hesitant Fuzzy Preference Relations,” Knowledge-Based Systems, vol. 127, pp. 1-15, 2017.
[3] A. Khalid and I. Beg, “Incomplete Hesitant Fuzzy Preference Relations in Group Decision Making,” International Journal of Fuzzy Systems, vol. 19, no. 3, pp. 637-645, 2017.
[4] H. Zhang, “Group Decision Making Based on Incomplete Multiplicative and Fuzzy Preference Relations,” Applied Soft Computing Journal, vol. 48, pp. 735-744, 2016.
[5] Z. J. Wang and K. W. Li, “Group Decision Making with Incomplete Intuitionistic Preference Relations Based on Quadratic Programming Models,” Computers and Industrial Engineering, vol. 93, pp. 162-170, 2016.
[6] F. Meng, and X. Chen, “A New Method for Group Decision Making with Incomplete Fuzzy Preference Relations,” Knowledge-Based Systems, vol. 73, pp. 111-123, 2015.
[7] F. Liu and W.G. Zhang, “TOPSIS-based Consensus Model for Group Decision-Making with Incomplete Interval Fuzzy Preference Relations,” IEEE Transactions on Cybernetics, vol. 44, no. 8, pp. 1283-1294, 2014.
[8] D. H. Zhu, “Group Polarization on Corporate Boards: Theory and Evidence on Board Decisions about Acquisition Premiums,” Strategic Management Journal, vol. 34, no. 7, pp. 800-822, 2013.
[9] S. Alonso, et al., “Group Decision Making with Incomplete Fuzzy Linguistic Preference Relations,” International Journal of Intelligent Systems, vol. 24, no. 2, pp. 201-222, 2009.
[10] E. Herrera-Viedma, et al., “A Consensus Model for Group Decision Making with Incomplete Fuzzy Preference Relations,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 5, pp. 863-877, 2007.
[11] E. Herrera-Viedma, F., Chiclana, F. Herrera, and S. Alonso, “Group Decision-Making Model with Incomplete Fuzzy Preference Relations Based on Additive Consistency,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 1, pp. 176-189, 2007.
[12] J. Stoyanovich, M. Jacob, and X. Gong. “Analyzing Crowd Rankings,” Proc. of the 18th International Workshop on Web and Databases, ACM, 2015.
[13] B. Vaziri, et al., “Crowd-Ranking: A Markov-Based Method for Ranking Alternatives,” Operational Research, pp. 1-17, 2017.
[14] S. Boulkrinat, A. Hadjali, and A. Mokhtari. “Crowd-Voting-Based Group Recommender Systems,” IEEE 12th International Symposium on Programming and Systems (ISPS), 2015.
[15] J. Howe, “The Rise of Crowdsourcing,” Wired Magazine, vol. 14, no. 6, pp. 1-4, 2006.
[16] J. Howe, “Crowdsourcing: A Definition,” Crowdsourcing: Tracking the Rise of the Amateur, 2006.
[17] I. Blohm, J.M. Leimeister, and H. Krcmar, “Crowdsourcing: How to Benefit from (too) Many Great Ideas,” MIS Quarterly Executive, vol. 12, no. 4, pp. 199-211, 2013.
[18] A. Bruun and J. Stage, “New Approaches to Usability Evaluation in Software Development: Barefoot and Crowdsourcing,” Journal of Systems and Software, vol. 105, pp. 40-53, 2015.
[19] C. J. Brady, A. C. Villanti, J. L. Pearson, T. R. Kirchner, O. P. Gupta, and C. P. Shah, “Rapid Grading of Fundus Photographs for Diabetic Retinopathy Using Crowdsourcing.” Journal of Medical Internet Research, vol. 16, no. 10, p. e233, 2014.
[20] M. Darren, A. C. Johnson, S. E. Murphy, J. M. Bernhardt, and K. P. Tercyak, “Using Crowdsourcing to Inform Public Health Policy Decisions: A Study of Indoor Tanning Warnings,” Annals of Behavioral Medicine, vol. 49, pp. S77-S77, 2015.
[21] R. Khare, J. D. Burger, and J. S. Aberdeen, “Scaling Drug Indication Curation through Crowdsourcing,” Database, vol. 2015, 2015.
[22] J. Kim, and W. Lee, “Stochastic Decision Making for Adaptive Crowdsourcing in Medical Big-Data Platforms,” IEEE Transactions on Systems Man Cybernetics-Systems, vol. 45, no. 11, pp. 1471-1476, 2015.
[23] D. Mitry, T. Peto, S. Hayat, P. Blows, J. Morgan, K.T. Khaw, P. J. Foster, “Crowdsourcing as a Screening Tool to Detect Clinical Features of Glaucomatous Optic Neuropathy from Digital Photography,” PLoS ONE, vol. 10, no. 2, 2015.
[24] C. J. Zhang, Y. Tong, and L. Chen. “Where To: Crowd-aided Path Selection,” Proceedings of the VLDB Endowment, vol. 7, no. 14, pp. 2005-2016, 2014.
[25] H. Su, K. Zheng, J. Huang, H. Jeung, L. Chen, and X. Zhou, “Crowdplanner: A Crowd-Based Route Recommendation System,”, IEEE 30th international conference on Data engineering, pp. 1144-1155, 2014.
[26] D. Zilli, O. Parson, G. V. Merrett, and A. Rogers, “A Hidden Markov Model-Based Acoustic Cicada Detector for Crowdsourced Smartphone Biodiversity Monitoring,” Journal of Artificial Intelligence Research, vol. 51, pp. 805-827, 2014.
[27] C. J. Zhang, L. Chen, and Y. Tong, “MaC: A Probabilistic Framework for Query Answering with Machine-crowd Collaboration,” ACM Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 11-20, 2014.
[28] L. Kazemi, C. Shahabi, and L. Chen, “Geotrucrowd: Trustworthy Query Answering with Spatial Crowdsourcing,” Proceedings of the 21st ACM sigspatial international conference on advances in geographic information systems, pp. 314-323, 2013.
[29] J. Lee, D. Lee, and S.W. Hwang, CrowdK: Answering Top-k Queries with Crowdsourcing,” Information Sciences, vol. 399, pp. 98-120, 2017.
[30] K. J. Arrow, R. Forsythe, M. Gorham, R. Hahn, R. Hanson, J. O. Ledyard et al., “The Promise of Prediction Markets,” Science, vol. 320, no. 5878, pp. 877-878, 2008.
[31] C. M. Chiu, T. P. Liang, and E. Turban, “What can Crowdsourcing do for Decision Support?,” Decision Support Systems, vol. 65, pp. 40-49, 2014.
[32] X. Chen, K. V. Jiao, and Q. H. Lin, “Bayesian Decision Process for Cost-Efficient Dynamic Ranking via Crowdsourcing,” Journal of Machine Learning Research, vol. 17, pp. 1-40, 2016.
[33] S. Chatterjee, A. Mukhopadhyay, and M. Bhattacharyya, “Dependent Judgment Analysis: A Markov Chain Based Approach for Aggregating Crowdsourced Opinions,” Information Sciences, vol. 396, pp. 83-96, 2017.
[34] L. Xia, C. Cao, L. Chen, and Z. Chen. “C-DMr: Crowd-powered Decision Maker for Real World Knapsack Problems,” IEEE 30th International Conference on Data Engineering (ICDE) , pp. 1174-1177, 2014.
[35] S. Niu, et al. “Listwise Approach for Rank Aggregation in Crowdsourcing,” Proc. of the Eighth ACM International Conference on Web Search and Data Mining, 2015.
[36] X. Lin, et al., “Reducing Uncertainty of Probabilistic Top-k Ranking via Pairwise Crowdsourcing,” IEEE Transactions on Knowledge and Data Engineering, 2017.
[37] Y. Zhang, W. Zhang, J. Pei, X. Lin, Q. Lin, and A. Li, “Consensus-Based Ranking of Multivalued Objects: A Generalized Borda Count Approach,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 1, pp. 83-96, 2014.
[38] J.-C. de Borda, “Mmoire sur les lections au scrutin,” Oxford Univ. Press for Social Sciences, 1781.
[39] W.D. Cook, “Distance-based and ad hoc Consensus Models in Ordinal Preference Ranking,” European Journal of Operational Research, vol. 172, pp.369-385, 2006.
[40] C. L. Dodgson, “A Method of Taking Votes on More Than Two Issues,” The Theory of Committees and Elections, London: Cambridge University Press, pp. 224-234, 1876.
[41] F. R. Hampel, “The Influence Curve and its Role in Robust Estimation,” Journal of the American Statistical Association, vol. 69, no. 346, pp. 383-393, 1974.
[42] T. N. Tideman, “Independence of Clones as a Criterion for Voting Rules,” Social Choice and Welfare, vol. 4, no. 3, pp. 185-206, 1987.
[43] G. W. Corder and D. I. Foreman, “Nonparametric Statistics: A Step-by-Step Approach,” NJ: John Wiley & Sons, 2014.
[44] T. L. Saaty, “How to Make a Decision: The Analytic Hierarchy Process,” European Journal of Operational Research, vol. 48, no. 1, pp. 9-26, 1990.
[45] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The Fuzzy c-means Clustering Algorithm,” Computers & Geosciences, vol. 10, nos. 2/3, pp. 191-203, 1984.
[46] S. Lipovetsky and W.M. Conklin, “Robust Estimation of Priorities in the AHP,” European Journal of Operational Research, vol. 137, no. 1, pp. 110-122, 2002.
[47] L. Ye and X. Deng. “The Computation and Application of Random Consistency Index,” 2nd International Conference on Information Science and Engineering, ICISE, 2010.
[48] X. He, D. G. Simpson, and S. L. Portnoy, “Breakdown Robustness of Tests,” Journal of the American Statistical Association, vol. 85, no. 410, pp. 446-452, 1990.
[49] J. A. McEwan and P. Schlich, “Correspondence Analysis in Sensory Evaluation,” Food Quality and Preference, vol. 3, no. 1, pp. 23-36, 1991.
[50] T. Kamishima, “Nantonac Collaborative Filtering: Recommendation Based on Order Responses.” ACM Proc. of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 2003.
[51] Liao, C. N., & Kao, H. P.. “An integrated fuzzy TOPSIS and MCGP approach to supplier selection in supply chain management,” Expert Systems with Applications, 38(9), 10803-10811, 2011.
[52] Tsaur, S. H., Chang, T. Y., & Yen, C. H.. “The evaluation of airline service quality by fuzzy MCDM,” Tourism management, 23(2), 107-115, 2002.
[53] Li, M., Jin, L., & Wang, J.. “A new MCDM method combining QFD with TOPSIS for knowledge management system selection from the user′s perspective in intuitionistic fuzzy environment,” Applied soft computing, 21, 28-37, 2014.
[54] Tavana, M., & Hatami-Marbini, A.. “A group AHP-TOPSIS framework for human spaceflight mission planning at NASA,” Expert Systems with Applications, 38(11), 13588-13603, 2011.
指導教授 許秉瑜(Hsu Ping-Yu) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明