參考文獻 |
[1] N. A. Dodgson, J. R. Moore, and S. R. Lang. “Multi-view autostereoscopic 3D display.” International Broadcasting Convention. Vol. 2. (1999).
[2] J. B. Eichenlaub, “Developments in autostereoscopic technology at Dimension Technologies Inc.” Proc. SPIE 1915,177–186 (1993).
[3] D. F. McAllister, Stereo Computer Graphics and Other True 3D Technologies, (Princeton University Press 1993).
[4] G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer-tracking autostereoscopic 3D display systems,’’ Proc. SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 187 (1997).
[5] R. Y. Tsai, C. H. Tsai, K. Lee, C. L. Wu, L. C. D. Lin, K. C. Huang, W. L. Hsu, C. S. Wu, C. F. Lu, J. C. Yang, and Y. C. Chen, “Challenge of 3D LCD displays,’’ Proc. SPIE 7329, 732903 (2009).
[6] S. W. Shih, J.H. Wang, C. H. Ting, and Y. P. Huang. “ Floating 3D Image for High Resolution Portable Device Using Integral Photography Theory.” SID Symposium Digest of Technical Papers (2015)
[7] T. Shibata, “Head mounted display”. Displays. 23 (1-2): 57–64. 1 April (2002).
[8] N. Cochrane, “VFX-1 Virtual Reality Helmet by Forte”. GameBytes. Retrieved 29 June (2011).
[9] P. J. Bos, and K. R. Koehler, “The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device,” Mol. Cryst. Liquid Cryst. 113, 329-339 (1984).
[10] Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “20.2: Stereoscopic 3D display using patterned retarder,” SID Symp. Dig. Tech. Papers. 39, 260-263 (2008).
[11] L. Bogaert, Y. Meuret, B. V. Giel, H. D. Smet, and H. Thienport, “Design of a compact projection display for the visualization of 3-D images using polarization sensitive eyeglasses,” J. Soc. Inf. Disp. 17, 603-609 (2009).
[12] A. J. Wood, C. R. Harris, “Comparing levels of crosstalk with red/cyan, blue/yellow, and green/magenta anaglyph 3D glasses ” , Proc. SPIE 7524, Stereoscopic Displays and Applications XXI, 75240Q (2010).
[13] A. J. Woods and T. Rourke, “Ghosting in anaglyphic stereoscopic images,” Proc. SPIE 5291, Stereoscopic Displays and Virtual Reality Systems XI, 354-365 (2004)
[14] F. Matsuura and N. Fujisawa, “Anaglyph stereo visualization by the use of a single image and depth information,” J. Vis. 11, 79-86 (2008).
[15] I. Ideses and L. Yaroslavsky, “New methods to produce high quality color anaglyphs for 3-D visualization,” International Conference Image Analysis and Recognition 3212, 273-280 (2004).
[16] F. Yaras, H. Kang, and L. Onural, “Circular holographic video display system” Opt.Express 19, 9147-9156 (2011).
[17] M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemela, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22, 2324-2336 (2014).
[18] J.-Y. Son and B. Javidi, “3-dimensional imaging systems based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[19] T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawi?ska, “Wide angle holographic display system with spatiotemporal multiplexing,” Opt. Express 20(25), 27473–27481 (2012).
[20] T. Kozacki, M. Kujawi?ska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[21] T. Kozacki, M. Kujawi?ska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51, 1771-1780 (2012).
[22] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTiO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[23] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niabate,” Appl. Phys. Lett. 13, 223-225 (1968).
[24] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3.” Appl. Phys. Lett. 9, 72 (1966).
[25] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
[26] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969).
[27] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics 22, 949-960 (1979).
[28] J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982).
[29] P .Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quant. Electronics 25, 484-519 (1989).
[30] A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16-18 (1977).
[31] M. Cronin-Golomb, J. O. White, B. Fischer, and A. Yariv, “Exact solution of a nonlinear model of four-wave mixing and phase conjugation,” Opt. Lett. 7, 313-315 (1982).
[32] R. A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983).
[33] C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang J. Y. Chang, and M. W. Chang, “Shearing interferometer with a kitty self-pumped phase-conjugate mirror,” Appl. Optics 35, 1815-1819 (1996).
[34] W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Optics 43, 1728-1733 (2004).
[35] C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Optics 40, 1253-1260 (2001).
[36] C. C. Sun, S. Yeh, M. W. Chang, and K. Y. Hsu, “Optimal incident conditions for a cat-type self-pumped phase-conjugate mirror,” Appl. Optics 31, 5769-5772 (1992).
[37] B. Wang, C. C. Sun, W. C. Su, and A. E. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Optics 39, 4788-4793 (2000).
[38] W. C. Su, Y. W. Chen, Y. Ouyang, C. C. Sun, and B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117-123 (2003).
[39] C. C. Sun, W. C. Su, B. Wang, and A. E. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001).
[40] H. F. Yao, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, “Ordinary polarized phase conjugator using the photovoltaic effect,” Opt. Commun. 184, 257-263 (2000).
[41] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples”, Nat. Photonics 2, 110-115 (2008).
[42] I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett., 101(8), 081108 (2012).
[43] M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444-3455 (2010).
[44] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[45] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728-735 (2015).
[46] T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[47] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012).
[48] C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723-20731 (2010).
[49] I. N. Papadopoulos, S. Farahi, C. Moser, and Demetri Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260-270 (2016)
[50] K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657-661 (2012).
[51] Y. M. Wang and C. Yang, “Acoustic-assisted iterative wave form optimization for deep tissue focusing,” California Institute of Technology, US Patent US20120070817 A1 (2012).
[52] Y. M. Wang, and C. Yang, “Acoustic-assisted iterative wave form optimization for deep tissue focusing,” California Institute of Technology, US Patent US 20120070817 A1 (2012).
[53] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[54] E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1128 (1962).
[55] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963).
[56] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
[57] J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-448 (1982).
[58] A. E. Chiou, T.-Y. Chang, and M. Khoshnevisar, “High-speed photorefractive phase conjugator with wide intensity dynamic range and wide field of view,” in OSA Annual Meeting, Vol. 15, 1990 OSA Technical Digest Series, (Optical Society of America, 1990), p. 40.
[59] A. E. Chiou, “Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects,” Proc. IEEE 87, 2074-2085 (1999).
[60] I. M. Vellekoop, Controlling the propagation of light in disordered scattering media. (2008)
[61] C. Gu and P. Yeh, “Partial phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107, 353-357 (1994).
[62] 陳瑋鑫,小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究,國立中央大學光電所碩士論文,中華民國102年。 |