博碩士論文 105226052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.16.76.102
姓名 劉興晨(Xing-Chen Liu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用費奈爾反射結構提升多重鏡面立體投影系統之有效通道數量之研究
(Increase of Effective Channel Numbers of Multi-segment 3-D Projection System with Else of Fresnel Reflector Structure)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以小貓自泵相位共軛術為基礎應用於數位光學共軛系統,藉由Kitty-SPPCM之快速、穩定及大角度的容忍範圍等優點,建立出一套高效能的數位光學共軛系統。基於此數位光學相位共軛器設計出一套能重建光學資訊之三維實像投影系統。本文欲藉由費奈爾反射結構使系統有效通道數與共軛訊號效率提升。接著於模擬中探討多種系統參數對於共軛聚焦點之行為影響,於實驗中使用費奈爾反射結構並改善系統通道數量以及共軛訊號之表現。從實驗結果得知,我們成功地建立出一套三維實像投影之模型。
摘要(英) In this paper, the Kitty self-pumped phase conjugate mirror (Kitty-SPPCM) is applied to a digital optical phase conjugator (DOPC). The advantages of Kitty-SPPCM are fast, stable and with wide-angle tolerance. We apply the digital optical phase conjugator to a new-design 3-D real image projection system that can potentially scan 3-D points, which are originated from a fiber. To increase the effective channel numbers of the system, and the efficiency of the conjugate signal, we study to use a Fresnel reflective structure. In addition, we have developed a simulation model of the 3-D real image projection to analyze the conjugate -focal-point behavior for various system parameters. In the experiment, the channel numbers and the performance of conjugate signal have been observed enhanced by use of the Fresnel reflective structure. Then we have successfully demonstrated a useful model of 3-D real image projection.
關鍵字(中) ★ 小貓自泵相位共軛鏡
★ 相位共軛
★ 多重鏡面投影系統
★ 數位光學相位共軛
關鍵字(英)
論文目次 摘要 ………………………………………………………………………………I
Abstract ………………………………………………………………………………II
致謝 ………………………………………………………………………………III
圖索引 ………………………………………………………………………………VIII
表索引 ………………………………………………………………………………XIV
第一章 緒論 ………………………………………………………………………………1
1-1研究領域介紹 ………………………………………………………………………………1
1-1-1 Yaras 團隊的立體投影系統…………………………………………6
1-1-2 Kujawinska 團隊的立體投影系統……………………………9
1-2 光學相位共軛器之發展……………………………………………………11
1-3 數位光學相位共軛器之發展 12
1-3-1 Yang 團隊2010年之DOPC………………………………………………13
1-3-2 Yang 團隊2012年之DOPC………………………………………………15
1-3-3 Yang 團隊2015年之DOPC………………………………………………17
1-3-4 Feld 團隊2013年之DOPC………………………………………………19
1-3-5 Psaltis 團隊2012年之DOPC………………………………………20
1-4 研究動機與挑戰……………………………………………………………………22
1-5 論文大綱及安排……………………………………………………………………23
第二章 實驗相關原理介紹……………………………………………………………………24
2-1 全像術…………………………………………………………………………………………24
2-2 Whittaker-Shannon取樣定理與空間帶寬乘積……27
2-3 貓式自泵相位共軛器 (Cat-SPPCM)……………………………30
2-4 小貓自泵相位共軛器 (Kitty-SPPCM)………………………31
2-5 角頻譜傳遞法…………………………………………………………………………33
2-6 訊雜比與有效通道數……………………………………………………………34
第三章 數位光學相位共軛器 (DOPC)……………………………………………37
3-1 DOPC 對位………………………………………………………………………………………38
3-2 讀取光相位擷取……………………………………………………………………………43
3-3 物光相位擷取及物光重建…………………………………………………………46
第四章 應用費奈爾反射結構之立體投影系統模型建立……………49
4-1 立體投影系統設計概念…………………………………………………………50
4-1-1 費奈爾反射結構設計………………………………………………………………53
4-2 建立應用費奈爾反射結構之等效模擬模型……………………57
4-3 有無費奈爾反射結構於光點數充足情形下對於共軛聚焦點行為分
析…………………………………………………………………………………………………………63
4-4 有無費奈爾反射結構於光點數不充足情形下對於共軛聚焦點行為
分析……………………………………………………………………………………………………67
4-5 相機離焦距離對於共軛聚焦點行為分析…………………………71
4-6 不同傾斜角度金蔥粉對於共軛聚焦點行為分析……………75
4-7 小結……………………………………………………………………………………………………78
第五章 應用費奈爾反射結構於立體投影系統實驗之分析……………79
5-1 費奈爾反射結構對於系統效率分析……………………………………79
5-2 費奈爾反射結構對於不同尺寸金蔥粉之共軛聚焦點行為之實驗與
模擬驗證…………………………………………………………………………………………82
5-3 金蔥尺寸對於共軛聚焦點行為之實驗與模擬驗證………85
5-4 有無費奈爾結構對於有效通道數與PBR之實驗分析……89
5-5 立體投影系統多點掃描……………………………………………………………91
5-6 立體投影系統未來展望……………………………………………………………93
第六章 結論………………………………………………………………………………………………………94
參考文獻………………………………………………………………………………………………………………96
中英文名詞對照表…………………………………………………………………………………………101

參考文獻 [1] N. A. Dodgson, J. R. Moore, and S. R. Lang. “Multi-view autostereoscopic 3D display.” International Broadcasting Convention. Vol. 2. (1999).
[2] J. B. Eichenlaub, “Developments in autostereoscopic technology at Dimension Technologies Inc.” Proc. SPIE 1915,177–186 (1993).
[3] D. F. McAllister, Stereo Computer Graphics and Other True 3D Technologies, (Princeton University Press 1993).
[4] G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer-tracking autostereoscopic 3D display systems,’’ Proc. SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 187 (1997).
[5] R. Y. Tsai, C. H. Tsai, K. Lee, C. L. Wu, L. C. D. Lin, K. C. Huang, W. L. Hsu, C. S. Wu, C. F. Lu, J. C. Yang, and Y. C. Chen, “Challenge of 3D LCD displays,’’ Proc. SPIE 7329, 732903 (2009).
[6] S. W. Shih, J.H. Wang, C. H. Ting, and Y. P. Huang. “ Floating 3D Image for High Resolution Portable Device Using Integral Photography Theory.” SID Symposium Digest of Technical Papers (2015)
[7] T. Shibata, “Head mounted display”. Displays. 23 (1-2): 57–64. 1 April (2002).
[8] N. Cochrane, “VFX-1 Virtual Reality Helmet by Forte”. GameBytes. Retrieved 29 June (2011).
[9] P. J. Bos, and K. R. Koehler, “The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device,” Mol. Cryst. Liquid Cryst. 113, 329-339 (1984).
[10] Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “20.2: Stereoscopic 3D display using patterned retarder,” SID Symp. Dig. Tech. Papers. 39, 260-263 (2008).
[11] L. Bogaert, Y. Meuret, B. V. Giel, H. D. Smet, and H. Thienport, “Design of a compact projection display for the visualization of 3-D images using polarization sensitive eyeglasses,” J. Soc. Inf. Disp. 17, 603-609 (2009).
[12] A. J. Wood, C. R. Harris, “Comparing levels of crosstalk with red/cyan, blue/yellow, and green/magenta anaglyph 3D glasses ” , Proc. SPIE 7524, Stereoscopic Displays and Applications XXI, 75240Q (2010).
[13] A. J. Woods and T. Rourke, “Ghosting in anaglyphic stereoscopic images,” Proc. SPIE 5291, Stereoscopic Displays and Virtual Reality Systems XI, 354-365 (2004)
[14] F. Matsuura and N. Fujisawa, “Anaglyph stereo visualization by the use of a single image and depth information,” J. Vis. 11, 79-86 (2008).
[15] I. Ideses and L. Yaroslavsky, “New methods to produce high quality color anaglyphs for 3-D visualization,” International Conference Image Analysis and Recognition 3212, 273-280 (2004).
[16] F. Yaras, H. Kang, and L. Onural, “Circular holographic video display system” Opt.Express 19, 9147-9156 (2011).
[17] M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemela, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22, 2324-2336 (2014).
[18] J.-Y. Son and B. Javidi, “3-dimensional imaging systems based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[19] T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawi?ska, “Wide angle holographic display system with spatiotemporal multiplexing,” Opt. Express 20(25), 27473–27481 (2012).
[20] T. Kozacki, M. Kujawi?ska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[21] T. Kozacki, M. Kujawi?ska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51, 1771-1780 (2012).
[22] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTiO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[23] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niabate,” Appl. Phys. Lett. 13, 223-225 (1968).
[24] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3.” Appl. Phys. Lett. 9, 72 (1966).
[25] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
[26] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969).
[27] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics 22, 949-960 (1979).
[28] J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982).
[29] P .Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quant. Electronics 25, 484-519 (1989).
[30] A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16-18 (1977).
[31] M. Cronin-Golomb, J. O. White, B. Fischer, and A. Yariv, “Exact solution of a nonlinear model of four-wave mixing and phase conjugation,” Opt. Lett. 7, 313-315 (1982).
[32] R. A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983).
[33] C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang J. Y. Chang, and M. W. Chang, “Shearing interferometer with a kitty self-pumped phase-conjugate mirror,” Appl. Optics 35, 1815-1819 (1996).
[34] W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Optics 43, 1728-1733 (2004).
[35] C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Optics 40, 1253-1260 (2001).
[36] C. C. Sun, S. Yeh, M. W. Chang, and K. Y. Hsu, “Optimal incident conditions for a cat-type self-pumped phase-conjugate mirror,” Appl. Optics 31, 5769-5772 (1992).
[37] B. Wang, C. C. Sun, W. C. Su, and A. E. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Optics 39, 4788-4793 (2000).
[38] W. C. Su, Y. W. Chen, Y. Ouyang, C. C. Sun, and B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117-123 (2003).
[39] C. C. Sun, W. C. Su, B. Wang, and A. E. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001).
[40] H. F. Yao, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, “Ordinary polarized phase conjugator using the photovoltaic effect,” Opt. Commun. 184, 257-263 (2000).
[41] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples”, Nat. Photonics 2, 110-115 (2008).
[42] I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett., 101(8), 081108 (2012).
[43] M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444-3455 (2010).
[44] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[45] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728-735 (2015).
[46] T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3, 1909 (2013).
[47] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012).
[48] C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723-20731 (2010).
[49] I. N. Papadopoulos, S. Farahi, C. Moser, and Demetri Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260-270 (2016)
[50] K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657-661 (2012).
[51] Y. M. Wang and C. Yang, “Acoustic-assisted iterative wave form optimization for deep tissue focusing,” California Institute of Technology, US Patent US20120070817 A1 (2012).
[52] Y. M. Wang, and C. Yang, “Acoustic-assisted iterative wave form optimization for deep tissue focusing,” California Institute of Technology, US Patent US 20120070817 A1 (2012).
[53] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[54] E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1128 (1962).
[55] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963).
[56] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
[57] J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-448 (1982).
[58] A. E. Chiou, T.-Y. Chang, and M. Khoshnevisar, “High-speed photorefractive phase conjugator with wide intensity dynamic range and wide field of view,” in OSA Annual Meeting, Vol. 15, 1990 OSA Technical Digest Series, (Optical Society of America, 1990), p. 40.
[59] A. E. Chiou, “Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects,” Proc. IEEE 87, 2074-2085 (1999).
[60] I. M. Vellekoop, Controlling the propagation of light in disordered scattering media. (2008)
[61] C. Gu and P. Yeh, “Partial phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107, 353-357 (1994).
[62] 陳瑋鑫,小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究,國立中央大學光電所碩士論文,中華民國102年。
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2018-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明