以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:116 、訪客IP:18.118.32.7
姓名 張庭培(Ting-Pei Chang) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 單光子放射顯微鏡系統之 取樣完整性與影像分析
(Sampling Completeness and Image Quality Analysis of Single Photon Emission Microscope)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 針孔式單光子放射電腦斷層掃描系統(SPECT)為生醫影像研究上的重要利器,在實際系統開發建構前,若能以模擬計算獲得系統的取樣完整性與影像品質評估,可有效降低硬體開發試誤的成本。基於此想法,本研究引入七針孔的單光子放射顯微鏡系統來進行模擬上的取樣完整性演算及影像重建品質的分析。
在模擬的演算上,取樣完整性係數(Sampling Completeness Coefficient, SCC)是由圖伊條件(Tuy’s Condition)在電腦斷層掃描系統下所建立,並修改適用於SPECT系統。我們使用此方法評估七針孔單光子放射電腦斷層掃描系統之取樣完整性,包含圓軌跡與螺旋軌跡的掃描,投影至直徑40 mm之閃爍晶石偵測器,來完成取樣完整性之評估。
而影像品質分析上,我們藉由實驗取得之通量模型與寬度模型數據,建立影像系統矩陣(H matrix),搭配自主建立之假體模型(Phantom)及最大可能性之期望值最大化演算法(MLEM)來進行影像投影與重建,評估在圓軌跡與螺旋軌跡下之影像品質。並由結果的分析可初步驗證,在進行影像系統建立或實際取像前,可以由取樣完整性的分析來評估不同系統設計或不同軌跡繞行下之影像品質,節省系統開發所需的花費與時間。摘要(英) Abstract
In this thesis, we use the seven-pinhole single photon emission microscope system (SPEM), which is a version of single photon emission computed tomography (SPECT) system, to simulate the sampling completeness coefficient and analyze the image quality. In order to lessen the development cost, we simulated the system architecture to predict the results and make sure that the system works properly.
In the simulation process, the Sampling Completeness Coefficient (SCC) is based on Tuy’s condition in a cone-beam CT system. We utilize it to evaluate the SCC of seven-pinhole single photon emission microscope system when an object is projected with circular and helical orbits onto the scintillator with 40 mm diameter.
To acquire high quality images, we need an accurate imaging system matrix, called H matrix, which is established from the flux and width models by using the experimental data. The H matrix is used to forward-project the simulated phantoms and the Maximum Likelihood Expectation Maximization (MLEM) algorithm is used for image reconstruction. The results show that SCC values are consistent with the reconstructed image quality. Therefore, the SCC analysis can be used to evaluate the system architecture, in terms of geometry designs and orbit paths, before building the actual system to lessen the cost and save time.關鍵字(中) ★ 單光子放射顯微鏡
★ 取樣完整性
★ 影像分析關鍵字(英) ★ SPEM
★ Sampling Completeness Coefficient
★ Image Quality Analysis論文目次 摘要 vi
Abstract vii
誌謝 viii
目錄 ix
圖目錄 xii
表目錄 xvii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 2
第二章 背景知識及回顧 4
2.1 核子醫學影像 4
2.1.1 單光子放射電腦斷層掃描系統(SPECT) 5
2.1.2 單光子放射顯微鏡(SPEM) 7
2.2 圖伊條件(Tuy’s condition) 9
2.3 螺旋式斷層掃描系統螺距限制 13
2.3.1 平行光束電腦斷層掃描(Parallel-Beam CT) 14
2.3.2 扇形光束電腦斷層掃描系統(Fan-Beam CT) 15
2.3.3 錐束電腦斷層掃描系統(Cone-Beam CT) 17
2.3.4 針孔式單光子放射電腦斷層掃描系統(Pinhole SPECT) 18
第三章 取樣完整性模型分析 19
3.1 取樣完整性模擬 19
3.2系統配置 22
3.3 七針孔圓形軌跡模型計算結果 24
3.4 七針孔螺旋軌跡模型計算結果 31
第四章 影像品質結果分析 36
4.1影像系統矩陣 36
4.2 物體函數模型(f)之建立 37
4.3 影像系統模型建立 38
4.3.1通量模型與寬度模型 38
4.3.2圓軌投影影像 44
4.3.3螺旋軌投影影像 48
4.4 影像重建結果 53
4.4.1 最大可能性之期望值最大化演算法(Maximum Likelihood Expectation Maximization, MLEM) 54
4.4.2 圓軌影像重建結果 56
4.4.3 螺旋軌影像重建結果 59
4.4.4 Defrise Phantom之影像重建結果 63
4.5結果討論與分析 69
第五章 結論與未來展望 79
參考文獻 81參考文獻 [1] Available: https://en.wikipedia.org/wiki/X-ray.
[2] National Research Council Institute Medicine, Mathematics and Physics of Emerging Biomedical Imagin, National Academy Press Washington, USA, 1996.
[3] Available: https://en.wikipedia.org/wiki/Nuclear_medicine.
[4] M. A. D. Reis, J. Mejia, I. R. Batista, M. R. F. F. D. Barboza, and S. A. Nogueira, et al., “SPEM: A state-of-the-art instrument for high resolution molecular imaging of small animal organs,” SciELO Einstein (Sao Paulo), vol. 10, no. 2, pp. 209-215, 2012.
[5] J. Mejia, M.A. Reis, A.C.C. Miranda, I.R. Batista, and M.R.F.Barboza, etal.,“Performance assessment of the single photon emission microscope:high spatial resolution SPECT imaging of small animal organs,” SciELOBrazilian Journal of Medical and Biological Research , vol. 46,no. 11, pp. 936-942, 2013.
[6] G. L. Zeng, “A Skew-Slit Collimator for Small-Animal SPECT,” Journal of Nuclear Medicine Technology, 36, 4, 207-212, 2008.
[7] H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM J. Appl. Math., vol. 43, no. 3, pp. 546-552, 1983.
[8] G. L. Zeng, Medical Image Reconstruction A Conceptual Tutorial, High
Education Press, Beijing, 2010.
[9] W. Z Huang, “Helical Trajectory Design of Multi-Pinhole Micro- SPECT Based on Sampling Completeness,” National Central University, Master thesis, 2015.
[10] G. L. Zeng, G. T. Gullberg, “Helical SPECT Using Axially Truncated Data,” IEEE Trans.Nucl. Sci.vol. 46,no. 6, pp. 2112-2118, 1999.
[11] B. Liu, J. Bennett, G. Wang, “Completeness map evaluation demonstrated with candidate next-generation cardiac CT architectures,” Med. Phys. 39, pp. 2405-2416, May 2012.
[12] G. S. P. Mok, Y. Wang, B. M. W. Tsui, “Quantification of the multiplexing effects in multi-pinhole small animal SPECT: a simulation study,” IEEE Trans. Nucl. Sci. 56 2636-2643, 2009.
[13] N. U. Schramm, G. Ebel, U. Engeland, T. Schurrat, M. Behe and T. M. Be--hr, “High-resolution SPECT using multipinhole collimation,” IEEE Trans. Nucl. Sci. 50 315–320, 2003.
[14] J. Y. Hesterman, M. A. Kupinski, L. R. Furenlid, D. W. Wilson and H. H. Barrett, “The multi-module, multi-resolution system (M3R): a novel small-animal SPECT system,” Med. Phys. 34 987–93, 2007.
[15] B. Y Huang, “System Calibration and Imaging Model Construction of Single Photon Emission,” National Central University, Master thesis, 2017.
[16] R. J. Jaszczak, “Nuclear imaging phantom,” U. S. Patent 4499375, 1985.
[17] F. V. D. Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,”IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960-971, 2008.
[18] R. Accorsi, and S. D. Metzler, “Analytic Determination of the Resolution-Equivalent Effective Diameter of a Pinhole Collimator,” IEEE Trans. Med. Imag., Vo1. 23, No. 6, pp. 750-763, 2004.
[19] K. V. Audenhaege, R. V. Holen, S. Vandenberghe, C. Vanhove, S. D. Metzler, and S. C. Moore, “Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging,” Med. Phys. 42, pp. 4796-4813, 2015
[20] L. A. Shepp, and Y. Vardi, “ Maximum Likelihood Reconstruction for Emission Tomography,” IEEE Trans. Med. Imag., Vol. 1, No. 2, pp. 113-122, 1982.
[21] H. H. Barrett, and K. J. Myers, Foundations of Image Science, Wiley Interscience, Hoboken, N. J., 2004.指導教授 陳怡君 審核日期 2018-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare