參考文獻 |
[1] T. Markvart, "The thermodynamics of optical etendue," Journal of Optics A: pure and applied optics, vol. 10, p. 015008, 2007.
[2] L. B. Glebov, "High brightness laser design based on volume Bragg gratings," in Defense and Security Symposium, 2006, p. 11.
[3] L. B. Glebov, "Volume Bragg Gratings in PTR Glass--New Optical Elements for Laser Design," in Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing, Rochester, New York, 2008, p. SThA4.
[4] T.-y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Optics Letters, vol. 31, pp. 229-231, 2006/01/15 2006.
[5] L. Glebova, K. Chamma, J. Lumeau, and L. Glebov, "Photo-Thermo-Refractive glass - Properties and Applications," in Advances in Optical Materials, Istanbul, 2011, p. AIThC2.
[6] L. Glebov, "High brightness diode lasers controlled by volume Bragg gratings," in SPIE OPTO, 2017, p. 8.
[7] G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, "Volume Holographic Grating Wavelength Stabilized Laser Diodes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 672-678, 2007.
[8] B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Optics Letters, vol. 29, pp. 1891-1893, 2004/08/13 2004.
[9] G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, "Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory," Optics Letters, vol. 23, pp. 1310-1312, 1998/08/15 1998.
[10] Y.-F. Chen, J.-H. Lin, S. H. Lin, K. Y. Hsu, and W.-T. Whang, "PQ:DMNA/PMMA photopolymer having amazing volume holographic recording at wavelength of insignificant absorption," Optics Letters, vol. 38, pp. 2056-2058, 2013/06/15 2013.
[11] W. B. Veldkamp, J. R. Leger, and G. J. Swanson, "Coherent summation of laser beams using binary phase gratings," Optics Letters, vol. 11, pp. 303-305, 1986/05/01 1986.
[12] J. R. Leger, M. L. Scott, and W. B. Veldkamp, "Coherent addition of AlGaAs lasers using microlenses and diffractive coupling," Applied Physics Letters, vol. 52, pp. 1771-1773, 1988.
[13] G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "Stable coherent coupling of laser diodes by a volume Bragg grating in photothermorefractive glass," Optics Letters, vol. 31, pp. 1453-1455, 2006/05/15 2006.
[14] 詹偉平 and C. Wei-ping, "以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究; Study of external cavity VBG-feedback laser using semiconductor tapered amplifier as the gain medium," 國立中央大學.
[15] 杜隆琦 and D. Long-Chi, "以PQ:PMMA製作體積布拉格光柵回饋半導體雷射以達成波長可調之窄波長雷射輸出;Narrow Linewidth and Tunable Wavelength Tapered Amplifier Laser Using PQ:PMMA Bragg Grating as Cavity Mirror," 國立中央大學.
[16] 陳傳文 and C.-W. Chen, "以PQ:PMMA製作反射式體積布拉格光柵回饋錐形半導體放大器之窄波長雷射輸出研究;Study on achieving narrowing linewidth laser output from tapered amplifier feedback with PQ:PMMA reflective volume Bragg grating," 國立中央大學.
[17] 施堡仁 and B.-J. Shih, "以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究;Analysis on diffraction efficiency of PQ:PMMA-based volume Bragg grating using detailed rate equations," 國立中央大學.
[18] T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 567-577, 2005.
[19] V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, "Spectral beam combining of a broad-stripe diode laser array in an external cavity," Optics Letters, vol. 25, pp. 405-407, 2000/03/15 2000.
[20] E. J. Bochove, "Theory of spectral beam combining of fiber lasers," IEEE Journal of Quantum Electronics, vol. 38, pp. 432-445, 2002.
[21] G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," in Lasers and Applications in Science and Engineering, 2005, p. 11.
[22] A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Optics Letters, vol. 33, pp. 384-386, 2008/02/15 2008.
[23] S. Menard, M. Vampouille, B. Colombeau, and C. Froehly, "Highly efficient phase locking and extracavity coherent combination of two diode-pumped Nd:YAG laser beams," Optics Letters, vol. 21, pp. 1996-1998, 1996/12/15 1996.
[24] D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, "Modal analysis of linear Talbot-cavity semiconductor lasers," Optics Letters, vol. 16, pp. 823-825, 1991/06/01 1991.
[25] C. C. Cook, T. Y. E. D. F. M. I. H. Fan, and U. Keller, "Spectral Beam Combining of Yb-doped Fiber Lasers in an External Cavity," in Advanced Solid State Lasers, Boston, Massachusetts, 1999, p. PD5.
[26] Z. Yujin, K. Toshiyuki, S. Nakahiro, S. Takashi, and K. Hirofumi, "Narrow-bandwidth and stable-wavelength operation of spatial beam-combining high-power laser-diode stack configuration using a single volume Bragg grating," Applied Physics Express, vol. 8, p. 052701, 2015.
[27] W. Koechner, Solid-State Laser Engineering: Springer, 2006.
[28] A. Mooradian, A. V. Shchegrov, and J. P. Watson, "Projection display apparatus, system, and method," ed: Google Patents, 2007.
[29] J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Applied Physics Letters, vol. 84, pp. 4289-4291, 2004.
[30] L. Gao, L. Shao, B.-C. Chen, and E. Betzig, "3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy," Nature Protocols, vol. 9, p. 1083, 04/10/online 2014.
[31] J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, "Self-healing properties of optical Airy beams," Optics Express, vol. 16, pp. 12880-12891, 2008/08/18 2008.
[32] A. Yariv and P. Yeh, Optical waves in crystals: propagation and control of laser radiation: Wiley, 1984.
[33] J. W. Goodman, Introduction to Fourier Optics: W. H. Freeman, 2005.
[34] D. Gabor, "Microscopy by Reconstructed Wave Fronts: II," Proceedings of the Physical Society. Section B, vol. 64, p. 449, 1951.
[35] E. N. Leith and J. Upatnieks, "Reconstructed Wavefronts and Communication Theory*," Journal of the Optical Society of America, vol. 52, pp. 1123-1130, 1962/10/01 1962.
[36] T. Nishi and T. Wang, "Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures," Macromolecules, vol. 8, pp. 909-915, 1975.
[37] Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, et al., "Study on poly (methyl methacrylate)/carbon nanotube composites," Materials Science and Engineering: A, vol. 271, pp. 395-400, 1999.
[38] O. Y. Borbulevych, R. D. Clark, A. Romero, L. Tan, M. Y. Antipin, V. N. Nesterov, et al., "Experimental and theoretical study of the structure of N, N-dimethyl-4-nitroaniline derivatives as model compounds for non-linear optical organic materials," Journal of molecular structure, vol. 604, pp. 73-86, 2002.
[39] J. O. Morley, V. J. Docherty, and D. Pugh, "Non-linear optical properties of organic molecules. Part 2. Effect of conjugation length and molecular volume on the calculated hyperpolarisabilities of polyphenyls and polyenes," Journal of the Chemical Society, Perkin Transactions 2, pp. 1351-1355, 1987.
[40] C.-Z. Zhang, H. Cao, and Z.-B. Guo, "Theoretical Study of Effect of the Number of N, N-dimethyl-4-nitroaniline Units in Novel “Parallel Connection” Chromophores on Its Nonlinear Optical Properties," ISRN Physical Chemistry, vol. 2012, 2011.
[41] M. Tsuda, "Some experiments on the triplet state mechanism of the spectral sensitization of poly (vinyl cinnamate) and its application for searching new sensitizers," Bulletin of the Chemical Society of Japan, vol. 42, pp. 905-908, 1969.
[42] "Study on the vibrational energy relaxation of p-nitroaniline, N,N-dimethyl-p-nitroaniline, and azulene by the transient grating method," The Journal of Chemical Physics, vol. 125, p. 194516, 2006.
[43] Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, et al., "Study of PQ/PMMA photopolymer. Part 2: experimental results," JOSA B, vol. 30, pp. 3308-3315, 2013.
[44] L. Shiuan-Huei, L. June-Hua, and Y. H. Ken, "Research on fabrication of PQ:PMMA photopolymer," in CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), 2003, p. 377 Vol.1.
[45] Y. N. Hsiao, W. T. Whang, and S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," 2004, p. 10.
[46] Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, et al., "Study of PQ/PMMA photopolymer. Part 1: theoretical modeling," Journal of the Optical Society of America B, vol. 30, pp. 3298-3307, 2013/12/01 2013.
[47] M. Born and E. Wolf, "Principles of Optics (; Oxford," ed: Pergamon, 1980.
[48] V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, "Quantitative model of volume hologram formation in photopolymers," Journal of Applied Physics, vol. 81, pp. 5913-5923, 1997.
[49] 李正中, 薄膜光學與鍍膜技術: 藝軒, 2006.
[50] J. A. Dobrowolski and D. Lowe, "Optical thin film synthesis program based on the use of Fourier transforms," Applied Optics, vol. 17, pp. 3039-3050, 1978/10/01 1978.
[51] B. G. Bovard, "Fourier transform technique applied to quarterwave optical coatings," Applied Optics, vol. 27, pp. 3062-3063, 1988/08/01 1988.
[52] W. H. Southwell, "Spectral response calculations of rugate filters using coupled-wave theory," Journal of the Optical Society of America A, vol. 5, pp. 1558-1564, 1988/09/01 1988.
[53] T.-Y. Chung, Y.-H. Hsieh, C.-C. Liao, and C.-H. A. Cheng, "Transverse modes of a laser using volume Bragg grating as the cavity mirror," Optics Letters, vol. 38, pp. 5346-5348, 2013/12/15 2013. |