博碩士論文 104622602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.141.35.60
姓名 維蒂利(Roma Widiyansari)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣南部的體波與表面波波場逆推:應用於TAIGER T4b寬角度折射/反射資料
(Body- and Surface-waves Wavefield Inversion in Southern Taiwan: Application to TAIGER T4b Wide Angle Refraction/Reflection Data)
相關論文
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用三維有限差分法模擬與分析台北盆地的場址放大效應★ 台北盆地的場址效應放大效應-譜比法應用於強震資料與理論分析的探討
★ 震波走時於台灣三維參考速度模型評估、地震定位及地利地區深部速度構造的研究★ 台灣地區參考莫荷面傾角變化的探討
★ 台灣西南部地殼變形與地震活動相關性研究★ 台灣西南外海多頻道震測之甲烷水合物與海洋精細構造成像研究
★ 透地雷達特性分析應用於油品污染物探測★ 測井資料的分析於兩處海底甲烷冰蘊藏區: 北阿拉斯加埃爾伯特山和墨西哥灣綠色峽谷的實際應用
★ 台灣西南海域下枋寮盆地甲烷水合物之AVO分析★ 台灣西南下枋寮盆地天然氣水合物調查同中點集的AVA/AVO模擬、分析和逆推
★ 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析★ Pre-Stack Diffraction Stack Depth Migration of Active Source Short-offset Marine and Long-offset Seismic Data
★ 以部分波場逆推及模擬對沿TAIGER T6測線的台灣北部地區進行深部構造成像★ 台灣西南近海Formosa Ridge天然氣水合物和游離氣岩石物理參數估算
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以近地表炸測記錄的表面波與體波進行南台灣地下速度構造成像。表面波與體波傳為表面波只沿著地球表面,而體波與此同時向地球內部深處傳遞。針對地殼尺度的速度構造調查,體波與表面波記錄的波場處理與逆推常適用於無走時挑定成像地球地表下構造。
震測資料集來自台灣2008年的台灣大地動力學國際合作研究計畫(TAIGER)進行地殼尺度寬角度折射/反射(WARR)探勘。南線陣列由西向東跨越台灣南部內含四個炸點(S1, S2, S3, S4),共配置有609個間距為200公尺的受波器。
我們使用兩種方法分別來求取沿著T4b 線的Vp 和Vs速度模型。第一種方法是透過表面波的多頻道分析(MASW)技術的執行來取得近地表速度構造。剪力波速度是在工程相關應用介質剛性最好的指針。近地表土壤或組成的剪力波速度特性是可以透過非均質介質的基本模態頻散曲線分析來回復。四個炸點中,炸點(S1) 1與炸點2(S1)具相當數量的地滾波記錄能應用MASW方法。第二種為基於tau-p波場逆推的方法,透過波場轉換與向下連續於長支距(或區域等支距)震測資料經由全域(或區域)搜尋演算法達成求取壓縮波(Vp)構造。透過波場處理策略可獨自獲得Vp 和Vs速度模型。
由逆推的剪力波與體波速度構造中,我們可明顯看到含岩盤邊界的台灣海岸平原西南部有略向西傾的速度梯度存在。假設上新世至中新世的剪力波為1.5公里/秒,西部海岸平原沖積層的厚度在西端約1.8公里且向東變薄至0.9公里。Vs30場址分類中,炸點S1為Class D1,炸點S2 為Class D3,兩者皆為 “stiff soil”。 體波波場逆推結果顯示地表下構造可成像至深度逼近20公里。在炸點S1和S2資料顯示,西部海岸平原的厚地層(~ 3公里)速度較低(Vp為1.5-4 公里/秒,Vs為250-1500 公里/秒)且具高梯度變化造成顯著的地震混響(折射的自由表面複反射)。強烈側向速度變化的證據標識出海岸平原與接近炸點S2東側的西部麓山帶之間的過渡帶。強烈速度過渡帶也可在中央山脈與海岸山脈的炸點S4看到。5.0至6.5公里/秒的Vp速度等值線穾顯地殼地層的一般特徵,西邊偏厚(各自對應深度為8和16公里),向東變薄(各自對應深度為4和9公里)。沿著T4b線檢查6.0和6.5公里/秒的等值線,顯示一個相對平坦的構造特徵從海岸平原延伸至西部麓山帶,其在距離40-78公里處增厚並朝著中央山脈和海岸山脈方向而變薄的現象,提供地殼增厚與變薄的地質構造與地殼運動特徵的生動看法。6.0公里/秒的等值線顯示在海岸平原處深度13公里至西部麓山帶深度約7公里,突顯可能有潛在上部與下部地殼邊界(康拉德不連續面)。最薄(薄片化)的大陸地殼會在大陸邊緣的典型裂谷帶發生。當6.5公里/秒和更高速的下部地殼地層範圍從6.9(或7.0)至7.5公里/秒可能顯示相似的特徵,並突顯下部地殼與上部地函邊界(莫荷不連續面)的存在,並可經由波場處理與速度逆推研究進一步標定。針對深度2.5-5公里進行更小心的近地表速度分佈調查,地殼厚度會比層析成像研究的結果更薄些。以試錯過程來挑選初達波到時有些令人乏味、無效能、耗時,且導致速度模型過度平滑。本論文的優點是並不需手動進行走時挑選,自動化且穩定的更新速度模型。量化獲得的模型可有效地檢查合成與實際走時記錄的一致性。

關鍵字: Tau-p轉換, Tau-p逆推, MASW, 表面波, 地滾波, TAIGER
摘要(英) Surface and body waves generated by near-surface explosions and recorded along T4b line is investigated for imaging subsurface velocity structure in Southern Taiwan. Surface waves propagate only at the Earth’s surface meanwhile body waves propagate deep through the body/interior of the Earth. For crustal-scale velocity structure investigation, wave-field processing and inversion of both body and surface waves records can be very useful to image Earth’s subsurface structures without picking travel-time.
Seismic dataset used in this research is a crustal-scale Wide Angle Refraction/Reflection (WARR) survey under TAiwan Integrated GEodynamics Research (TAIGER) project conducted in 2008 in Taiwan. The south main array consist of four shot points (S1, S2, S3, S4) across southern Taiwan from west to east. A total of 609 geophones was deployed with receiver interval of about 200m.
We use two approaches to estimate separate Vp and Vs velocity models along T4b line. The first method is through implementation of Multichannel Analysis of Surface Wave (MASW) technique to determine near-surface velocity structure. Shear wave velocity is the best indicator of material stiffness for engineering related applications. The near-surface soil or formation shear wave velocity (Vs) characteristics can be retrieved by analyzing the dispersion curve associated with the fundamental mode of surface waves in heterogeneous media. MASW method is only applicable for shot number 1 (S1) and shot number 2(S1) that possess significant amount of ground-rolls records. The second method is based on tau-p wave-field inversion. Through wave-field transformation and downward continuation approach, application of long-offset (or local short-offset) seismic data to estimate compressional wave velocity (Vp) structures can be achieved via direct global (or localized) search algorithm. Through wave-field processing strategy, independent Vp and Vs velocity models can be obtained.
From inverted shear and body wave velocity structure, we can see obvious velocity gradient exist in southwestern Taiwan Coastal Plain with the bedrock boundary is slightly west-dipping. Assume the shear wave velocity of Pliocene to Miocene bedrock is 1.5 km/s, the thickness of alluvial sediments at the west-end of western Coastal Plain is ~1.8 km and become thinner toward the east with depth ~0.9 km. The Vs30 site classification for shot S1 is Class D1 and for shot S2 is Class D3 which all corresponds to “stiff soil”. From body wave wave-field inversion, subsurface structure can be imaged up to depth of approximately 20 km. In the Western Coastal Plain, a thick sediment layer (~ 3 km) with fairly low velocity (Vp= 1.5-4 km/s and Vs=250-1500 km/s) and high gradient changes produce significant seismic reverberations (refracted free-surface multiples) shown in data S1 and S2. Evidence of strong lateral velocity changes marked the transition between Coastal Plain and Western Foothills near east side of shot point S2. Strong lateral velocity transition also can be observed between Central Range and Coastal Range at shot point S4. The contour lines for Vp values between 5.0 to 6.5 km/s highlight the general feature of crust layer which thicken in the west (depth=8 and 16 km respectively) and thinned toward the east (depth =4 and 9 km respectively). By examining the contour value of 6.0 and 6.5 km/s, a relatively flat structure feature extend from Coastal Plain to Western Foothills; thickening at the distance between 40-78 km and thinning toward Central Range and Coastal Range provide a vivid view of crustal thickening and thinning feature associate with tectonic structure along the T4b line. The 6 km/s contour shown at the depth of 13 km from Coastal Plain and reaches the depth of ~7 km at Coastal Range may highlight the potential boundary between upper and lower crust (Conrad discontinuity?). The extreme thinning (necking) of the continental crust can be occurred by a typical rift zone at continental margin. The 6.5 km/s and a high velocity lower crust layer with velocity ranging from 6.9 (or 7.0) to 7.5 km/s may show similar features and may highlight the existing boundary between lower crust and upper mantle (Moho discontinuity?) which can be identified from wavefield processing and velocity inversion studies. With more careful investigate near-surface velocity distribution within 2.5-5 km, crust thickness can be thinner than the result from tomography studies. Picking the first arrival time with trial-and-error processes are somehow tedious, not efficient and time-consuming may lead to overly smoothed model. The advantages of the proposed method are no need to manually pick travel time and automatically and stable update of velocity model. The quality of the derived model is effectively checked by the consistency between computed travel-time with seismic records.

Keywords: Tau-p Transform, Tau-p Inversion, MASW, Surface Waves, Ground-roll, TAIGER Project
關鍵字(中) ★ Tau-p轉換
★ Tau-p逆推
★ MASW
★ 表面波
★ 地滾波
★ TAIGER
關鍵字(英) ★ Tau-p Transform
★ Tau-p Inversion
★ MASW
★ Surface Waves
★ Ground-roll
★ TAIGER Project
論文目次 Table of Contents

Chinese Abstract……………………………………………………………...........................i
Abstract………………………………………………………………………...…………….iii
Acknowledgements ……………………………………………………………….………….v
Table of Contents………………………………………………………………………….…vi
List of Figures…………………………………………………………………….……...…viii
List of Tables…………………………………………………………………………..….…xv
Chapter 1 Introduction………………………………………………………………………1
1.1 Seismic Waves to Image Earth’s Subsurface Structures………………………………1
1.2 Overview of TAIGER Project…………………………………………………………2
1.3 Geotectonic Framework of Southern Taiwan………………………………………….3
1.4 Previous Studies…………………………………………………………………….….4
1.5 Objectives of Study…………………………………………………………………….8
1.6 Outline of this Thesis………………………………………………………...……….11
Chapter 2 Data and Data Preprocessing…………………………………………………..24
2.1 Data…………………………………………………………………………………...24
2.2 Overview (Quick Analysis) of Raw Data…………………………………………….26
2.3 Data Preprocessing………………………………………………………………...…30
2.3.1 Data Processing to Extract the Surface Waves (Groundroll) in Shot S1 and S2..30
2.3.2 Data Pre-processing for Body Wave Tau-p Inversion………………………….33
Chapter 3 Surface Wave Analysis and Inversion for Shallow Vs Structures in South Western Taiwan………………………………………………………………..53
3.1 Multichannel Analysis of Surface Waves (MASW)…………………………………53
3.2 Rayleigh Waves Dispersion…………………………………………………………..54
3.3 Dispersion Imaging Method…………………………………………………………..56
3.4 Inversion of Rayleigh Waves Dispersion……………………………………………..58
3.5 Data Processing of MASW…………………………………………………………...60
3.6 Results and Discussions………………………………………………………………65
Chapter 4 Wavefield Transformation and Inversion of Refraction Data………………103
4.1 Wavefield Transformation…………………………………………………………..104
4.2 Downward Continuation…………………………………………………………….112
4.3 Application of Tau-p Inversion on Synthetic Data………………………………….115
Chapter 5 Application of Tau-p Inversion on TAIGER South Main Array Data…….150
5.1 Data pre-conditioning by Localized Slant-Stack Wavefield Processing……………150
5.2 Tau-p Transform and Inversion of TAIGER Line Tb4 Data……………………….158
5.3 Construct 2D Vp Model from the Inverted 1D Vp Models………………………...169
Chapter 6 Discussion and Conclusions…………………………………………………...235
6.1 Discussion……………………………………………………………………….…..235
6.2 Conclusions……………………………………………………………………...….243
6.3 Limitation of this Study and Suggestions for Future Work………………………..245
參考文獻 Chung, J. K., and Y. T. Yeh (1997). Shallow crustal structure from short period Rayleigh-wave dispersion data in southwestern Taiwan, Bull. Seism. Soc. Am. 87, 370–382.
Dal Moro, G., Pipan M., Forte, E., and Finetti, I., 2003. Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments, Proceedings SEG (Society of Exploration Geophysicists), 73st Annual Int. Mtg. (Dallas, Texas, October 2003).
Dulaijan and Stewart. 2007. Surface-Wave Analysis for Estimating Near-Surface Properties, CREWES Research Report-Volume 19.
Geometric, 2005, SeisImager/SW Manual: Windows Software for Analysis of Surface Waves.
Higashi, S., T. Satoh, H. Kawase, T. Iwata, T. Sato, K. Irikura, and H.C. Huang (2001). S-wave velocity structures of the Taichung basin estimated from array and single-station records of microtremors, Bull. Seism. Soc. Am., 91(5), 1267-1282.
Huang, B.S., Wang, C.Y., Okaya, D., Lee, S.J., Lai, Y.C., Wu, F., Liang, W.T., Huang, W.G., 2013. Multiple diving waves and steep velocity gradients in the western Taiwan coastal plain: an investigation based on the TAIGER experiment, Bulletin of the Seismological Society of America, Vol. 103, No. 2A, pp. 925–935.
Huang, H. C., and Wu C. F., 2006. Estimations of the S-wave velocity structures in Chia-Yi City, Taiwan, using the array records of microtremors, Earth Planets Space, 58, 1455–1462, 2006.
Kanli A. I., Tildy, P., Pronay, Z., Pinar, A., and Hermann, L., 2004. Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey, Geophys. J. Int. (2006) 165, 223–235, doi: 10.1111/j.1365-246X.2006.02882.x.
Kitsunezaki, C., Goto, N., Kobayashi, Y., Ikawa, T., Horike, M., Saito, T., Kurota, T., Yamane, K., and Okuzumi, K. (1990), Estimation of P- and S-wave velocities in deep soil deposits for evaluating ground vibrations in earthquakes, SIZEN-SAIGAI-KAGAKU, 9(3): 1-17 (in Japanese).
Lee, J. H., C. Y. Lu, H. T. Chu, B. Delcaillau, J. Angelier, and B. Deffontaines (1996). Active deformation and paleostress analysis in the Pakua anticline area of western Taiwan, Terrestrial, Atmospheric and Oceanic Sciences 7, 431–446.
Lin, C. M., Chang, T. M., Huang, Y. C., Chiang H. J., Kuo, C. K., and Wen, K. L., 2007. Shallow S-Wave Velocity Structures in the Western Coastal Plain of Taiwan, Terr. Atmos. Ocean. Sci., Vol. 20, No. 2, 299-308, doi: 10.3319/TAO.2007.12.10.01(T).
Lin, Y. P., Li Zhao, and Hung, S. H., 2011. Assessment of Tomography Models of Taiwan Using First-Arrival Times from the TAIGER Active-Source Experiment, Bulletin of the Seismological Society of America, Vol. 101, No. 2, pp. 866–880, April 2011, doi: 10.1785/0120100244.
Lines R.L., Treitel S., 1984. A review of least squares inversion and its application to geophysical problems, Geophysical prospecting, 32, 159-186.
Ludwig, W.J., Nafe, J.E. and Drake, C.L. (1970) Seismic Refraction, the Sea. Vol. 4 (Part 1), Wiley-Interscience, New York, 53-84.
Martin, A. J., and Diehl, J. G., 2004. Practical Experience Using a Simplified Procedure to Measure Average Shear-Wave Velocity to a Depth of 30 Meters (Vs30), 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada.
McMechan, G. A., and Yedlin, M. J., 1981. Analysis of dispersive waves by wave field transformation: Geophysics, 46, 869-874.
Miller, Richard D. and Xia, Jianghai. 1999. Using MASW to Map Bedrock in Olathe, Kansas. Kansas Geological Survey. Kansas.
Motazedian D., Hunter, J. A., Pugin, A., and Crow H., 2011. Development of a Vs30 (NEHRP) map for the city of Ottawa, Ontario, Canada, Can. Geotech. J. 48: 458–472 (2011), doi:10.1139/T10-081.
Paradigm, 2015. Echos: SUPPRES, Band-limited Noise Suppression.
Park, C. B., Miller, R. D. and Xia, J. H., 1997. Summary report on surface-wave project at Kansas Geological Survey (KGS). [Open-file Report]. Lawrence, KS: Kansas Geological Survey.
Park, C. B., Miller, R. D. and Xia, J. H., 1998. Imaging dispersion curves of surface waves on multi-channel record, SEG Expanded Abstracts.
Park, C. B., Miller, R. D., Xia, J.H., and Ivanov, J., 2007. Multichannel analysis of surface waves (MASW)—active and passive methods, The Leading Edge, Society of Exploration Geophysicists.
Gallipoli, M. R., and Mucciarelli, M., 2009. Comparison of Site Classification from VS30, VS10, and HVSR in Italy, Bulletin of the Seismological Society of America, Vol. 99, No. 1, pp. 340–351, February 2009, doi: 10.1785/0120080083.
Regnier, J., Bonilla, L. F., Bertrand, E., and Semblat, J. F., 2014. Influence of the VS Profiles beyond 30 m Depth on Linear Site Effects: Assessment from the KiK-net Data, Bulletin of the Seismological Society of America, Vol. 104, No. 5, pp. 2337–2348, October 2014, doi: 10.1785/0120140018.
Shaw, C. L. (1996). Stratigraphic correlation and isopach maps of the western Taiwan basin, Terrestrial, Atmospheric and Oceanic Sciences 7, 333–360.
Shin, T. C., K. W. Kuo, W. H. K. Lee, T. L. Teng, and Y. B. Tsai (2000), A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake, Seism. Res. Lett. 71, 24–30.
Strobbia, C., 2003. Surface Wave Methods: Acquisition, Processing and Inversion, Ph. D thesis, Politecnico Di Torino, 317 pp.\r Thomson, W. T., 1950. Transmission of elastic waves through a stratified soil medium, Appl. Physics, 21(2), 89-93.
Tokimatsu, K.,Tamura, S., and Kojima, H., 1992. Effects of Multiple Modes On Rayleigh Wave Dispersion Characteristics Journal of Geotechnical Engineering, Vol. 118 No. 10, October, 1992.
Wang, H. Y., and Wang S. Y., 2015. A New Method for Estimating Vs(30) from a Shallow Shear-Wave Velocity Profile (Depth <30 m), Bulletin of the Seismological Society of America, Vol. 105, No. 3, pp. 1359–1370, June 2015, doi: 10.1785/0120140103.
Wu, C. F. and H.C. Huang, … EPS paper
Xia, J., Miller, R. D. and Park, C.B, 1999. Estimation of Near Surface Shear Wave Velocity by Inversion of Rayleigh Wave. Kansas Geological Survey, Kansas.
Xia, J., Miller, R. D., Park, C.B., and Tian, G., 2002. Inversion of high frequency surface waves with fundamental and higher modes, Journal of Applied Geophysics 52 (2003) 45– 57.
Zhao, J. X., and Xu H., 2013. A Comparison of VS30 and Site Period as Site-Effect Parameters in Response Spectral Ground-Motion Prediction Equations, Bulletin of the Seismological Society of America, Vol. 103, No. 1, pp. 1–18, February 2013, doi: 10.1785/0120110251.
Gorman, A. R. and Clowes, R. M., 1999, Wave-field Tau- p analysis for 2-D velocity models: Application to western North American Lithosphere, Geophysical Research Letters, Vol. 26, No. 15, Pages 2323-2326, August 1, 1999, Canada.
Huang, B.S., Wang, C.Y., Okaya, D., Lee, S.J., Lai, Y.C., Wu, F., Liang, W.T., Huang, W.G., 2013. Multiple diving waves and steep velocity gradients in the western Taiwan coastal plain: an investigation based on the TAIGER experiment, Bulletin of the Seismological Society of America, Vol. 103, No. 2A, pp. 925–935.
Huang, H. H., Wu, Y.M., Song, X.D., Chang, C. H., Lee, S.J., Chang, T. M., Hsieh, H.H., 2014. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters. http://dx.doi.org/10.1016/j.epsl.2014.02.026.
Kuo-Chen, H., Wu, F.T., Roecker, S.W., 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal Of Geophysical Research, Vol. 117, B06306, doi:10.1029/2011JB009108.
Lin YP. (2018) Crustal Velocity Variations in Taiwan Revealed by Active-Source Seismic Observations. In: Isotropic and Anisotropic Seismic Tomography Using Active Source and Earthquake Records. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Singapore.
Ventosa, S., Simon, C., and Schimmel, M., 2012. Window length selection for optimum slowness resolution of the local-slant-stack transform, Geophysics, Vol. 77, No. 2 (March-April 2012); P. V31–V40, 9 Figs., 1 Table. 10.1190/Geo2010-0326.1
Zheng, Z., Ventosa, S., and Romanowicz, B., 2015. High resolution upper mantle discontinuity images across the Pacific Ocean from SS precursors using local slant stack filters, Geophysical Journal International, Oxford University Press (OUP), 2015, 202 (1), pp.175 - 189.
Clayton, R.W., and G. A. McMechan, 1981a. Inversion of refraction data by wavefield continuation, Geophysics, 46,860-868,198la.
Clayton, R.W., and G. A. McMechan, 1981b. Inversion of refracted free-surface multiples by wavefield continuation, SEP Report.
Dal Moro, G., Pipan M., Forte, E., and Finetti, I., 2003. Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments, Proceedings SEG (Society of Exploration Geophysicists), 73st Annual Int. Mtg. (Dallas, Texas, October 2003).
Diebold, J. B., and Stoffa, P. L., 1981. The travel time equation, tau-p mapping, and inversion
of common midpoint data, GEOPHYSICS, VOL. 46, NO. 3 (MARCH 1981): P. 23X-254.
Huang, H. H., Wu, Y.M., Song, X.D., Chang, C. H., Lee, S.J., Chang, T. M., Hsieh, H.H., 2014. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters. http://dx.doi.org/10.1016/j.epsl.2014.02.026.
Kuochen, Hao., 2011. Imaging Deep Structure Under the Taiwan Orogen: Toward Tectonic Model Testing, Ph. D Thesis, Binghamton University, 175 pp.
Lee, C. T. and Tsai, B. R., 2008. Mapping Vs30 in Taiwan, Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, 671-682, doi: 10.3319/TAO.2008.19.6.671(PT)
Lin, Y. P., Li Zhao, and Hung, S. H., 2011. Assessment of Tomography Models of Taiwan Using First-Arrival Times from the TAIGER Active-Source Experiment, Bulletin of the Seismological Society of America, Vol. 101, No. 2, pp. 866–880, April 2011, doi: 10.1785/0120100244.
Lin, Y. P. 2018. Crustal Velocity Variations in Taiwan Revealed by Active-Source Seismic Observations. In: Isotropic and Anisotropic Seismic Tomography Using Active Source and Earthquake Records. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Singapore.
Park, C. B., Miller, R. D. and Xia, J. H., 1998. Imaging dispersion curves of surface waves on multi-channel record, SEG Expanded Abstracts.
Ventosa, S., Simon, C., and Schimmel, M., 2012. Window length selection for optimum slowness resolution of the local-slant-stack transform, Geophysics, Vol. 77, No. 2 (March-April 2012); P. V31–V40, 9 Figs., 1 Table. 10.1190/Geo2010-0326.1
指導教授 陳浩維(How-Wei Chen) 審核日期 2018-5-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明